
Kaizen: Building a Performant Blockchain
System Verified for Consensus and Integrity
Faria Kalim∗, Karl Palmskog†, Jayasi Mehar‡, Adithya Murali∗, Indranil Gupta∗ and P. Madhusudan∗

∗University of Illinois at Urbana-Champaign †The University of Texas at Austin ‡Facebook
∗{kalim2, adithya5, indy, madhu}@illinois.edu †palmskog@acm.org ‡jayasimehar@fb.com

Abstract—We report on the development of a blockchain
system that is significantly verified and performant, detailing
the design, proof, and system development based on a process of
continuous refinement. We instantiate this framework to build, to
the best of our knowledge, the first blockchain (Kaizen) that is
performant and verified to a large degree, and a cryptocurrency
protocol (KznCoin) over it. We experimentally compare its
performance against the stock Bitcoin implementation.

I. INTRODUCTION

Blockchains are used to build a variety of distributed sys-
tems, e.g., applications such as cryptocurrency (Bitcoin [1] and
altcoins [2]), banking, finance, automobiles, health, supply-
chain, and others [3], [4], [5]. In scenarios where there is
traditionally a central ledger, blockchain-based approaches
provide a democratized and decentralized alternative.

At the heart of any blockchain system is a distributed
consensus protocol. This protocol ensures that the ledger is
sharded into blocks, and that all nodes in the system agree
on the order, content, and dependency verification of the
blocks. Yet, today all blockchain and cryptocurrency with large
deployments remain largely unverified implementations.

Formally verifying blockchains, and more broadly dis-
tributed systems, is extremely challenging, especially due to
concurrency and asynchrony. Implementations of distributed
systems running in production are large pieces of code with
several features, functionalities, and optimizations, making
them hard to verify ex-post. Consequently, the only techniques
that are viable for realizing verified systems involve designing
them correct by construction.

The main contribution of this paper is to build a blockchain
system, and an associated cryptocurrency system that are
both performant and have a verified consensus protocol at
their core. Our approach ensures both safety and liveness
properties of the blockchain and cryptocurrency system. We
build this system using a novel iterative refinement process
that combines interactive theorem proving and refinement
verification using automated Floyd-Hoare style techniques.

The Kaizen refinement framework: There are two main tech-
niques for constructing correct distributed software today. The
first is a set of techniques based on using interactive theorem
provers, such as Coq [6], where Coq type theory experts write
a high-level abstract protocol and prove correctness properties

†The first two authors contributed equally to this work.
‡Work done while at University of Illinois at Urbana-Champaign.

for it [7]. This protocol can then be automatically translated to
equivalent code in a functional language and deployed using
a shim layer to a network to obtain working reference imple-
mentations of the basic protocol. However, there are several
drawbacks to this—it is extremely hard to work further on
the reference implementation to refine it to correct imperative
and performant code, and to add more features to it to meet
practical requirements for building applications.

The second technique, pioneered by the IronFleet sys-
tems [8], is to use a system such as Dafny to prove a system
correct with respect to its specification via automated theorem
proving (using SMT solvers) guided by manual annotations.

In this paper, we develop our Kaizen approach for
blockchain protocols using a synergistic blend of the two tech-
niques above. Kaizen is a variant of the IronFleet approach.
Our approach is to start with an abstract distributed protocol
(a consensus protocol for blockchain in our case) and prove
correctness properties using an interactive theorem prover. We
then refine the protocol to an imperative program using a
program verifier that supports more automated verification,
like Dafny, and similar to IronFleet. Interactive higher-order
theorem provers such as Coq are extremely powerful, capable
of virtually proving/checking any proof written by humans.
IronFleet showed that correctness of several distributed proto-
cols can be coaxed into first-order systems with standard theo-
ries as supported by Dafny (using ghost code and tactics). Yet,
we believe that the flexibility afforded by interactive theorem
provers significantly enlarge the scope of correctness proofs.
Interactive theorem provers such as Coq have been used to
prove complex properties involving cryptography and game-
based proofs, pseudorandomess and probability [9], [10], [11].

The idea that building verified systems need both automated
SMT reasoning (for speed and less manual annotation) and
expressive logics (for proving more complex theorems that
cannot be easily reduced to SMT reasoning) is not new.
The Everest project [12] at Microsoft Research that aims
to build a verified HTTPS ecosystem uses F∗, and F∗ has
grown over the years to support interactive theorem proving
in addition to automated SMT-based reasoning [13]. Similarly,
the newly designed Lean proof assistant [14] also combines
SMT reasoning with interactive theorem proving.

The Kaizen blockchain and KznCoin: We build a blockchain
system and a cryptocurrency over it by using a refinement
framework as the one described above. Our starting point is a

recently developed formalization of the blockchain/blockforest
protocol in Coq by Pirlea and Sergey [15], where the abstract
distributed protocol works in an asynchronous out-of-order
message-passing environment and where several properties are
proved regarding validity of the reachable global states of the
system as well as an eventual consistency property. The goal
we set for ourselves is to take this protocol expressed in Coq
and to continuously refine it to a usable performant imperative
implementation of an altcoin, with proven refinement guaran-
tees. The proven refinement ensures that our core protocol
implementation inherits all the safety and liveness (eventual
consistency) properties proved for the abstract protocol in Coq.

We develop our KznCoin cryptocurrency on top of the
Kaizen blockchain and evaluate its performance against
the stock Bitcoin implementation [16]. We argue that the
blockchain can be used as a backbone for a full-fledged
Bitcoin-like cryptocurrency that uses standard proof-of work
measures for controlling the growth of the chain.

In our experience in this project, we found our refinement
methodology to be friendly to systems developers, as it allows
teams with different expertise to collaboratively build a com-
plex verified system. Experts in interactive theorem provers
can work on designing abstract distributed protocols and
prove complex properties. Meanwhile, systems engineers who
are not necessarily trained in formal verification or abstract
specification languages, can work on refining the protocol
using imperative code using automated verification techniques,
and concentrate their efforts on instantiating the protocol for
particular applications and making them more performant,
keeping control of the design at all times.

We focus our verification on the core blockchain consensus
properties under crash failures and eventual message delivery.
Proving correctness under Byzantine models remains an open
problem in the community (see Section IX on related work
and the discussion in Section VIII).

Our work can also be seen as exploring a new point in
distributed systems verification, namely computation-intensive
distributed systems. Systems like IronFleet focused on dis-
tributed systems that were not data-intensive (key-value
store, state machine library), and involved relatively low
computation. A blockchain system involves relatively in-
tense local computation which nodes execute (work done on
the blockchain, such as computing hashes, validating long
stretches of a growing blockchain, etc.). Consequently, a
lot of of effort is devoted to refining code with imperative
datastructures that speed up this computation. We also perform
a final refinement that is carefully argued, but not formally
verified, to increase the system’s performance.
The contributions of this paper are:

• The engineering of a performant blockchain (Kaizen) and
a cryptocurrency over it (KznCoin) in C#, built using
a continuous refinement that combines interactive theo-
rem proving and automated refinement. Our core system
first achieves a provable refinement of a core verified
blockchain consensus protocol formulated by Pirlea and

Sergey [15], preserving all their safety and liveness prop-
erties. We then add at the deployment layer a network shim
and carefully argued (but not formally verified) refinements
to gain further performance.

• An evaluation of the cryptocurrency against a reference
Bitcoin implementation on a real network that shows that
the system can be used as a backbone for a full-fledged
Bitcoin-like cryptocurrency that uses standard proof-of
work measures for controlling the growth of the chain.

We provide artifacts and supplementary material at this URL:
https://madhu.cs.illinois.edu/kaizen

II. BACKGROUND

A. Blockchains and Bitcoin

A blockchain is an open, distributed ledger that can record
transactions between two parties in serializable order, in a
verifiable and permanent way [17], [18]. Bitcoin is a de-
centralized cryptocurrency that uses Nakamoto consensus [1]
to maintain a blockchain of transactions across an untrusted
peer-to-peer network [18]. The peers in the network generally
belong to different organizations or companies so that there is
no single point of authority. These peers use gossip protocols
to propagate transactions and blocks further in the network.

A node in the network can transfer currency from their ad-
dress to another by creating a digitally signed transaction. Any
new transaction must pass a reference to a previous transaction
that the node might have received from another address. This
ensures that all nodes in the network can cryptographically
verify the creator of the transaction.
Tamper-proof chain: Each block has a unique hash and
contains the hash of the preceding block, as well as the Merkle
hash of its transactions. The first block in the chain, called
the genesis block, is defined in the protocol. To effectively
tamper with a transaction in the middle of the chain, an
adversary would have to tamper with the transaction’s hash in
the block. This would cause the hash of the block to change.
The adversary would then have to change the hash of the block
in the next block in the chain until the head. Other nodes with
the same chain would be able to detect this tampering.
Proof-of-Work: Nakamoto consensus proposes using proof-
of-work to periodically choose the next node that gets to add
a new block to the chain. Calculating proof-of-work refers to
finding the solution to a cryptographic hash function H, where
the solution is defined by string y, such that given string x as
input, H(y.x) — the hash of the concatenation of the two — is
smaller than a target value. The miner that finds the proof first
sends the newly minted block to other peers in the network.
Other miners add the block to the chain if they are able to
verify that the proof is correct.
Forking and Consensus: The blockchain forks when two
valid blocks point to the same previous block. The protocol
resolves forks using a set of rules that choose the branch
that has more weight in terms of mining power. Consensus
in Bitcoin is achieved when all nodes have the same blocks
in their local best blockchain. Miners continue to add blocks

https://madhu.cs.illinois.edu/kaizen

to the best branch they know of, until one branch becomes
significantly longer and is considered to be the main chain.
Due to forking, transactions are usually not considered fully
committed into a chain, unless there are a sufficient number
of blocks (usually six in Bitcoin) after their containing block.

B. Verification paradigms

We assume familiarity with two verification paradigms—
Coq-based interactive theorem proving and Dafny-based SMT-
aided mostly automated verification.

C. System Model

Distributed System Model: We assume a distributed system
where nodes are connected via a network where any node can
send messages to any other node. While the nodes or network
are not Byzantine, nodes may fail by crashing. Messages may
be sent asynchronously and concurrently, and may be dropped,
delivered out of order, or duplicated. Our KznCoin system is
run on a real cluster and injected with real Bitcoin traces.
Trusted Computing Base (TCB): Our verification work
makes reasonable assumptions about underlying systems: (a)
Coq proof checkers, (b) Dafny and its provers, (c) compilers,
(d) translation from Coq protocol to Dafny contracts (Phase 3),
(e) reasonable assumptions (e.g., hash functions being injec-
tive), (f) a network shim layer that can send and receive
messages (Section VI-B).

III. THE KAIZEN FRAMEWORK

We describe our Kaizen framework at a high level1. The
key idea is to combine interactive theorem proving in proof
assistant (based on higher-order logic), with verified refine-
ment using Floyd-Hoare style mostly-automated reasoning.

A. Refinement methodology based on movers:

Our refinement is divided in three stages. Our methodology
is stylized to allow sequential refinement throughout. Focusing
on sequential code reduces complexity of refinement in spite
of asynchronous message passing in the distributed system.

The protocol is specified using code snippets of the form:
R; C; SU

where R is a sequence of receive-messages, C is a terminating
local computation at the node, and SU is a set of send-
messages and updates of the current state of the node. We
assume that these rules are executing atomically, without
interruption.

The rule-based approach has two advantages. First, we
can distribute the protocol across any set of nodes, and not
worry about interleavings where the code is (in global time)
interrupted by computation at other nodes. The reason is that
any such computation can be reordered into a computation
where all blocks are executed atomically. The argument fol-
lows from the mover arguments for reduction by Lipton [19],
as receive-messages are right-movers and send-messages are
left-movers, while local computations are both left- and right-
movers. Consequently in any global computation where this

1Kaizen means continuous improvement.

rule executes, interleaved by actions at other nodes, we can
always reorder the execution to an equivalent execution where
the rule is executed atomically.

Second, this approach significantly reduces proof burden
for safety properties, and allows us to work with a sequential
verification tool like Dafny. We can refine each step of the
protocol as sequential code, and not worry about interleavings.
Such refinement is not new— the receive-compute-send/update
is similar to the actor model of computation [20] and similar
refinement styles have been explored before, for instance in
the IronFleet system [8].

Third, when we prove that the local computation terminates
(which we do in our proofs in Dafny), even liveness properties
are preserved by the refinement. For every infinite computation
in the refined system, since it cannot be stuck in a local
computation in a rule, and since rules simulate the abstract
protocol, we can find an equivalent infinite execution of the
abstract protocol. This immediately argues that any liveness
property in the abstract system is preserved in the refined
system (we need to be careful that we do not introduce new
messaging or change the system model for messages). We
hence inherit all the safety and liveness properties of the
original blockchain protocol of Pirlea and Sergey [15]. The
IronFleet system [8] uses a similar methodology for proving
liveness; however, in their system, liveness properties are
proved on the abstract protocol using Dafny by embedding
TLA, while in ours they are proved in Coq.

B. Kaizen refinement stages

The first of our three refinement stages consists of leverag-
ing a proof assistant (Coq in our case) to develop an abstract,
formal protocol describing the behavior of the distributed
system and proving its correctness. The second stage consists
of refining the formal description to imperative code in a
verification-aware language and environment (Dafny in our
case). The third stage consists of refinements using a practical
programming language (C# in our case) for realizing an
implementation of the distributed system. Figure 1 depicts the
three stages and the phases within them.

IV. STAGE I: REFINEMENTS IN COQ

A. Phase 1: Protocol specification and verification

Here, we specify and prove the protocol in Coq. We encode
the state of each network node using Coq’s algebraic datatypes
and use pure state update functions for network message
processing (like work in [21]). Correctness proofs can then be
performed over a transition system capturing network behavior
where these functions are called per step.

State and transitions can involve parameter datatypes and
functions over which the protocol is parameterized, along with
axioms expressing the necessary properties those datatypes and
functions must fulfill for the specification to hold. In principle,
properties of data and functions unrelated to the axioms do not
matter in this phase.

For Kaizen, we build on work by Pirlea and Sergey [15]
to define a general blockchain consensus protocol where the

PHASE 1 PHASE 2 PHASE 3 PHASE 4 PHASE 5 PHASE 6 PHASE 7

STAGE I STAGE II STAGE III

Abstract
protocol
design &

verification in
Coq

Translation of
abstract

protocol to
Dafny

contracts

Refinement to
imperative

code in Dafny

Implementing
application

specific
functions in C#

Translation to
executable
code on a

distributed
network

Refinement in
Coq

Refinement in
Dafny for

performance

Coq experts Dafny experts Dafny experts and
systems engineers Systems engineers

Fig. 1: The Kaizen Framework.

key operations (e.g., transaction validation, procedures for
generation of proofs of work or stake) are parameters. The
main property proved in this work is eventual consistency:
that in a quiescent state, all nodes have a canonical ledger.
This is proved by proving a safety property that states that in
a clique topology, there exists a global block forest which is
a superset of the local forest of any node, which is a valid
block forest that contains the canonical ledger (which is a
ledger that is greater than or equal to any local ledger). This
global block forest is in fact the one obtained by adding to the
local block forest at any node all the blocks in-flight at the time
to it. In a quiescent state, there are no in-flight messages and
hence the local blockchains are in consensus. The protocol
abstracts away several functions requiring only basic sanity
properties on them; this includes transaction validation, block-
chain validation, and the fork-chain rule.

The goal of our work is to build a blockchain system
that provably inherits this eventual consistency property and
the various safety properties of the above protocol. This
constitutes the precise set of verified properties that we target.

The Coq encoding defines blocks as a datatype with a
previous-block “pointer” hash, a list of transactions, and a
proof-of-work/stake, as follows:
Record Block := mkB { prevBlockHash : Hash;
txs : seq Transaction; proof : VProof }.

The state of a node in Kaizen is defined by its globally
unique name, a list with the name of its peers, a list (pool)
of transactions, and a forest of blocks, in the form of a finite
map from hashes to blocks:
Record State := mkS { id: Address; peers: seq Address;
forest: map Hash Block; txpool: seq Transaction }.

At any time, a node can obtain its longest known chain of
blocks rooted in the special genesis block, where longest is
defined according to a parameterized relation (“fork choice
rule”), which is not concretely defined. All transactions in
blocks in this chain are validated using the parameter function
txValid. One axiom, used in our correctness proofs, states
that txValid returns true when passed any transaction and
the empty chain: ∀t, txValid t [::]. We check block
validity via the function:

Definition valid_chain_block (bc:seq Block)
(b:Block):= VAF (proof b) bc (txs b) &&
all [pred t | txValid t bc] (txs b)].

B. Phase 2: Initial protocol refinement

For KznCoin, we refine the abstract blockchain datatypes
and functions according to the specification of Bitcoin [1],
[16]. For example, representing byte vectors as lists of mathe-
matical integers, the type of transactions, Transaction, is
defined in Coq as follows:
Record TIn := mkTI { prevout_hash : seq Z;
prevout_n : seq Z; scriptsig : seq Z;
sequence : seq Z }.
Record TOut := mkTO { value : seq Z;
scriptpubkey : seq Z }.
Record Transaction := mkT { version : seq Z;
ins : seq TIn; outs : seq TOut; locktime : seq Z}.

Here, the definitions reflect that KznCoin transactions consist
of a number of inputs (pointing to previous transactions)
transferring cryptocurrency to a number of output addresses.

We also define block and transaction hashing functions,
which are parameters in the abstract protocol, to use SHA-
256 hashing as prescribed by Bitcoin, i.e., twice on properly
concatenated vectors of bytes. We used Coq’s module system
to verify that the functions and data in our protocol refinement
have the proper signatures, so that the correctness theorem can
be reestablished [22].
Addressing Obstacles Faced: We encountered several ob-
stacles from [15] that prevented us from capturing the Bitcoin
specification. To overcome these obstacles, we made several
important proof-preserving changes to the abstract protocol
and related definitions in Coq; these changes were all approved
by Pirlea and Sergey.

One obstacle was that the abstract protocol did not permit
adding new transactions when blocks are minted. This rules
out coinbase transactions that are added by miners to obtain
a block reward. We resolved this by adjusting the function
parameter genProof, used during block minting.

Another obstacle was that the validator acceptance function,
VAF, which checks the validity of a proof-of-work or proof-
of-stake, was not called except during block minting in the
abstract protocol, while Bitcoin specifies that it has to be called

on all blocks in a chain. We resolved this by adding the VAF
call to the function valid_chain_block above, which is
used when obtaining the longest chain from a block forest.

V. STAGE II: REFINEMENTS IN DAFNY

In Stage II, we manually translate the data structures and
functions in Stage I from Coq to Dafny, and refine the
resulting definitions to performant imperative code in Dafny.
Our implementation of KznCoin consists of several classes
and methods whose contracts express that they conform to
the behavior of some function translated from Coq. This
contrasts with IronFleet’s approach [8], wherein the equivalent
translation is entirely within Dafny.

A. Phase 3: Protocol translation to Dafny

We manually translated all relevant datatypes, functions,
and refinements from Phase 1 and Phase 2 to equivalent
Dafny definitions. Due to the close similarities between
Coq’s programming language and Dafny’s purely functional
fragment, the translation was straightforward. For example,
the Block and State datatypes (presented in Coq above)
are defined in Dafny as:
datatype Block = Block(prevBlockHash:Hash,
txs:seq<Transaction>, proof:VProof)
datatype State = Node(id:Address,
peers:seq<Address>, forest:map<Hash,Block>,
txpool:seq<Transaction>)

Preparing to Transition from Functional to Imperative
Code: As an initial step, we set up a Dafny class that holds the
node state and implements methods for protocol state updates:
class StateImpl {
var id :Address;
var peers :. . .; var forest :. . .; var txpool :. . .;
ghost var st:State;
predicate Valid() { . . .}
method ProcMsgImpl(from:Address, msg:Message,
ts:Timestamp) returns (pt:seq<Packet>)

requires Valid(); ensures Valid();
ensures st == procMsg(old(st), from, msg, ts).0;
ensures pt == procMsg(old(st), from, msg, ts).1;
{ . . .}
method ProcIntImpl(tr:InternalTransition,
ts:Timestamp) returns (pt:seq<Packet>)

requires Valid(); ensures Valid();
ensures st == procInt(old(st), tr, ts).0;
ensures pt == procInt(old(st), tr, ts).1;
{ . . .}

}

The variables peers, forest, and txpool can be of any
(mutable) type as long as they have a representation in terms
of the (immutable) algebraic datatypes in the State data
type. For example, peers could be an array, which has a
sequence representation. The Valid() predicate then asserts
that the representations of the variables are consistent with
what is stored in the ghost variable st, in the style advocated
by Leino [23]. In turn, this means that the contracts for
ProcMsgImpl and ProcIntImpl express that these meth-
ods perform state updates consistent with the Coq functions
procMsg and procInt (so the Coq correctness proofs hold
for systems implemented using StateImpl objects).

In essence, with the Dafny modules and the StateImpl
class, we have obtained constraints under which all further
refinement must be performed, as well as the interface for
unverified code to call our verified code.

B. Phase 4: Refinement to imperative code in Dafny

Next, we refine the functional code into imperative code. We
start by implementing Dafny methods for each function called
in procMsg and procInt. Because the code of a method
corresponds closely to its specification, and we use the same
algebraic datatypes, it is straightforward to do this translation
from functional code into Dafny, and to prove the specification
correct. We also encode stubs for methods that are deferred
to C# code inside Dafny, and write the corresponding method
signatures in C# code that gets linked to the code compiled
from Dafny. This process yields an executable and verified
(though incomplete) implementation of StateImpl.

Next, we iteratively replace functional code in the verified
Dafny implementation. We (a) replace algebraic datatypes
with mutable datastructures such as arrays and classes, and
(b) replace functional idioms such as recursion and pattern-
matching by imperative idioms such as loops and accesses to
mutable fields. For example, we refined the Dafny sequences
of transactions in the node state (txpool) into linked lists that
also store the list size, and with ghost variables capturing the
heaplet of the list which is needed for mutable datastructure
reasoning. We then systematically replace all methods acting
on sequences of transactions to instead act on linked lists,
while preserving their specification (now in terms of the
sequence representing the linked list).

C. Phase 5: Performance optimizations & Dafny refinements

Refinements here optimize performance in three ways:
Data structure refinements: A prime example of these
refinements in our work involves our encoding of a block
forest as a finite map from Hashes to Blocks, similar to the
formalization in the work by Pirlea and Sergey [15]. Our initial
implementation used Dafny’s map type, which we found to
be inefficient due to the number of accesses (e.g., by the
method that returns the FCR-longest valid chain in the block
forest). Instead we store hashes using a binary search tree
and implement a map over it. We define this in Dafny, and
prove that the operations on it—including addition, removal,
lookup, and copy—satisfy the same contracts as that of the
map structure. This took about 680 lines of Dafny code.
Refinements to operations on data structures: An example
of such an optimization is our method to append two linked
lists (defined in Phase 4 Section V-B). Its implementation
added one element at a time as this made verification easy.
But this is inefficient as it involved multiple passes and pointer
manipulations. We replaced this with a more efficient one-
pass algorithm. This involved a notion of validity of linked
list segments and the maintenance of complex invariants.
Recursive to iterative implementations: We identified about
20 auxiliary functions that were implemented recursively and
refined them to more efficient iterative versions. For example,

the method to validate a list of transactions with respect to
a blockchain would validate the first transaction and then
recursively compute on the rest of the list. This had to be
reimplemented using iteration (using array semantics of the
list containing the transactions).

The first two classes above are hard. Defining data structures
that are allocated on the heap often have definitions (of the
validity of their representations) that are recursive and involve
complex relationships between their attributes.

VI. STAGE III: REFINEMENTS IN C#

We build KznCoin from our verified system Kaizen by
adding Bitcoin-specific functionality (Section VI-A) and con-
nect it to other peers via a network shim layer (Section VI-B).

A. Phase 6: Application specific functions

We fill in methods that were left unspecified in the ab-
stract Coq/Dafny protocol. Any methods that needed verifi-
cation were already handled through the separation described
Phase 4. Consequently, we only need to add methods in C#
that do not need verification.

• Transaction Validity (txValid): In KznCoin, a node must
validate each transaction to ensure that no transaction with
the same hash exists in the chain already, the transaction’s
parent transactions exist, and the transaction’s parent trans-
actions are unspent to prevent double-spending attacks.

• Validator Acceptor Function (VAF): We found that the
specification in [15] did not completely satisfy Bitcoin se-
mantics and thus we modified it while developing KznCoin
(e.g., it did not support coinbase transactions; see Phase 1).
Apart from a duplicate block check, we also check that the
calculated value of its cryptographic hash proof is correct.

• Generate Proof: KznCoin uses proof-of-work to mint
blocks. Every miner solves a hash problem with difficulty
based on the nonce value. We set this nonce difficulty level
to a negligible value during our evaluation to measure the
overhead of only the blockchain mechanisms.

• Fork Chain Rule (FCR): This function is used to compare
the weights of two chains and establish a total order
between them. The specification [15] is indifferent to
how such an order is established. We follow the Bitcoin
semantics to pick the chain with the highest weight.

B. Phase 7: Building a connected system & optimizations

Optimizations: Systems needs to be amenable to optimiza-
tions – this is part of their lifecycle. We improve KznCoin’s
performance by adding several unverified optimizations:
1. Extracting the chain from the Block Tree: The base
KznCoin stores the block tree as a top-down binary search
tree. This makes it time-consuming to extract all chains and
compare them to the longest chain. Instead, we extract only
the heaviest chain. We keep track of the weight of all leaf
nodes. We extract the chain by following the leaf node with
the heaviest weight all the way up to the genesis block (instead
of top-down). We can see why this follows the contract.

2. Processing only new blocks for chain extraction: Chain
extraction was computationally expensive since to update
weights of leaf pointers, we traversed through all blocks in the
block tree. Instead, we now update pointers by only traversing
through newly arrived or minted blocks. This also allows
KznCoin to quickly return a cached copy of the heaviest chain
if no new blocks have arrived/minted.
3. Replacing binary search tree with C# dictionary : We
found that the binary search tree was a bottleneck also due
to its lack of a self-balancing mechanism. To address this
bottleneck, we replaced it with a C# dictionary.
4. Removing unnecessary sorting: At least one assertion
was superfluous and removable without affecting the proof.
In particular, we removed the assertion that compared if two
collections were equal and was expensive, as it required sorting
the two collections for comparison.

The above optimizations were not formally verified. Though
they all seem simple and correct, they are not all easy to realize
strictly as refinements to the verified code. The problem of
redefining all the layers starting from Phase 1 in a way that
allows such performance optimizations as refinements seems
hard, and is left to future work.
Building a connected system: We connect our implemen-
tation to other peers via a network shim layer that uses
lightweight UDP.

A peer sends a connect message to announce itself to
the network, and an address message to propagate infor-
mation about newly discovered peers. The transaction
and block messages announce new transactions and blocks
respectively. An inv message is sent periodically to inform
other nodes about the transactions and blocks a peer holds,
represented by their hash. The inv can be responded with a
get-data message, requesting the full transaction/block by
sending its hash.

Due to our sequentiality assumption in our specifications
(Section III), the shim layer at each node uses one thread
for interactions with the KznCoin implementation. Since the
network is asynchronous, we speed up message processing by
using a thread-safe queue to store incoming messages.
Optimizing the Shim: Initially, messages were processed in a
FIFO manner from the received queue. However, we observed
(in our evaluation) that the queue sizes grew monotonically.
We address this via several optimizations:
1. Refreshing stale inv messages in the queue: We avoid pro-
cessing of messages that are obsolete by subsequent messages
from the same sender. This is done via an up-to-date map
of all unprocessed inv messages, indexed by sender address.
When a new message is received from the same sender, we
update that sender’s entry (creating one if sender is absent).
2. Prioritizing block messages: Whenever we receive a
block message, we add it to the front of the queue. This
prevents other nodes from repeating effort for transactions that
are already a part of the block.
3. Filtering duplicate get-data messages: Every inv
message needs a get-data message response sent back to
the sender. In practice, duplicate inv’s are received. We curtail

the overhead of processing and generating duplicate responses
via a cache of all transactions and blocks already requested.

These optimizations prune messages as the protocol would
do. However, these are not verified to be equivalent in the
present system and are part of the Trusted Computing Base.

VII. EVALUATION

A. Experimental Setup

KznCoin is not as scalable as Bitcoin yet. However, the
goal of our evaluation is to prove that the Kaizen methodol-
ogy has the potential to allow KznCoin to approach Bitcoin
performance at some scales.
Performance Evaluation—Metrics: We compare the perfor-
mance of KznCoin (with optimizations enabled) with the stock
Bitcoin implementation [16] with respect to two important
metrics: the time it takes all peers to globally achieve consen-
sus, and the amount of time required to mint a block. These
two metrics directly impact end users whose transactions only
make it into the global ledger once blocks are minted and all
nodes decide on the same chain.
Experimental Setup: We use a 30-node Emulab cluster [24].
Each node has a 2.4 GHz 64-bit 8-Core processor and a 64 GB
RAM, and is connected using a 1 Gbps network. To measure
performance independent of proof-of-work overhead, we set
the difficulty of the hash problem to a negligible value. For
fairness, we set the stock Bitcoin client to its regression testing
mode [25], which uses a similar low hash problem setting.
Workload: We use a realistic workload by obtaining traces
of the arrival times of 50 transactions from the “Blockchain”
website [26], a software platform for digital assets that offers
real time transaction data for developers to analyze the Bitcoin
network. We replay the trace by announcing transactions in a
round-robin fashion across peers in the network, using the
same inter-arrival times as the trace.

B. Results

 100 500 1000
Initial Number of Blocks

10 1

100

Ti
m

e
to

 M
in

t B
lo

ck
 (S

ec
on

ds
)

Bitcoin: 30 Nodes
KznCoin: 10 Nodes

KznCoin: 20 Nodes
KznCoin: 30 Nodes

Fig. 2: Minting Times KznCoin vs. Bitcoin. Time required to
mint a new block from new transactions.

Minting Times: Figure 2 shows the time to mint a block
after sufficient transactions are received. We vary the cluster
size and the size of the blockchain that the experiment is
initially started with, and observe the effect on performance.

KznCoin can generate a block in less than a second. KznCoin’s
performance degrades slightly with both increasing chain size
and cluster size. For every single minted block, KznCoin
extracts and validates the chain in which the block belongs
from the block tree. This process becomes time-consuming
as the chain size increases. Larger clusters also cause more
forking, increasing overhead. In the worst case, KznCoin takes
0.59 seconds to mint blocks on a 30-node with a 1000 block
chain. However, this is still practical as it is much smaller than
the time to do proof of work today (about 10 minutes [27]).
Time to Achieve Consensus: Figure 3 shows the time for
KznCoin to reach consensus, i.e., time from the beginning
of trace injection until all nodes have consistent state. First,
KznCoin’s performance degrades gracefully with increasing
chain size–0.58 s for 100 blocks vs. 2.1 s for 1000 blocks.
Second, Bitcoin degrades less at scale because of its heavily-
optimized C++ implementation.

 100 500 1000
Initial Number of Blocks

0

1

2

Ti
m

e
to

 C
on

se
ns

us
 (S

ec
on

ds
)

Bitcoin KznCoin

Fig. 3: Time to Consensus: KznCoin vs. Bitcoin.

Scalability: Figure 4 shows the effect of increasing cluster
sizes and the length of the input workload on the performance
of KznCoin. Each node is configured to mint a block after it
has received two transactions not already present in the chain.

Figure 4 shows that for a shorter trace length, KznCoin’s
consensus time falls from 4.2 s to 2.1 s when cluster size
increases from 20 to 30. As the trace length is equal, each
node in the 20-node cluster receives more transactions to
process than a node in the 30-node cluster, leading to longer
convergence times. Nodes on the 30 node cluster receive less
transactions and immediately mint blocks, reducing forking.

When the trace size increases to 250, consensus times are
greater for the 10-node cluster than for 20-nodes since each
node has more transactions to mint blocks from. Forking
is higher on the 30-node cluster because nodes disseminate
transactions so quickly at the experiment start that many mint
new blocks with subsets of the same transactions.
Development Effort: Table I shows the lines of code in
different components that were built as part of the Kaizen
framework. 4 developers were involved for 4 months (all part-
time). 50% (2 of the 4) developers were verification experts,
and 50% were distributed systems experts.

VIII. LESSONS LEARNT AND DISCUSSION

Lessons we expected: Our team consists of people with
expertise in Coq, Dafny, system engineering, and some have

 10 20 30
Cluster Size

0

2

4

6

8

10

Ti
m

e
to

 C
on

se
ns

us
 (S

ec
on

ds
)

Bitcoin - 50
KznCoin - 50

Bitcoin - 250
KznCoin - 250

Fig. 4: Scalability: KznCoin vs. Bitcoin. The number in the
legend indicates number of transactions in the input trace.

Component Lines of Code
Additions to the original Coq proof 1119

Blockchain Refinement in Dafny 4937
Bitcoin Refinement in C# 915

Network Shim in C# 4159

TABLE I: Lines of proof and code.
mixed expertise. While the subteams required a lot of commu-
nication (and a learning curve to recognize the strictness that
verified refinement imposes), we found that the teams could,
for the most part, exercise their expertise in their domains.

We often encountered situations where a design change
was required, typically to incorporate features (like coinbase
transactions) or incorporate a different approach for perfor-
mance. We were able to identify the appropriate abstraction
to backtrack and make changes that would allow the required
refinement. At the same time, making this iterative design pro-
cess more agile, nimble, and fast, remains an open direction.
Lessons we did not expect: Going into development, we
assumed that communication would be the aspect to optimize,
not local computation. However, it turned out that computa-
tion was more important to optimize, primarily because of
computing validity of blockforests.
Future Work: Our work builds on the work by Pirlea
and Sergey [15], where properties are proven about the ab-
stract protocol assuming only honest agents. Implementing a
blockchain/bitcoin system with fully formally proven correct-
ness guarantees for consensus and integrity including under
Byzantine conditions, that also matches performance of stock
Blockchain (possibly using concurrency) remains an impor-
tant open problem [28], [29], [30]. It requires assumptions
involving proof-of-work complexity and network speed, and
formalizing this for our protocol in Coq is an interesting future
direction. We believe Kaizen is the right framework to achieve
this, but doing so would require modeling the protocol even at
the first stage by keeping an eye on performance, anticipating
the refined system that will be built, before proving properties
of the protocol and refining it.

IX. RELATED WORK

There is a lot of work on formalizing and analyzing consen-
sus protocols for blockchains such as [28], [30]. The work by

Pass, et al. shows that consensus mechanisms satisfy strong
forms of consistency and liveness in an asynchronous network
with adversarial delays that are a-priori bounded.

There is also work on other Byzantine Agreement proto-
cols such as Algorand [31] and on proof-of-stake consensus
protocols such as Ouroboros [29]. Such protocols can be
implemented using the Kaizen framework as well.

Many recent lines of work are in systems verification.
seL4 [32] pioneered a functionally correct, general-purpose
OS kernel. However, it took 22 person-years to produce 8700
lines of verified C code. Ironclad Apps [33] allows users to
securely transmit data to other machines with the guarantee
that instructions executed there adhere to a formal behavioral
specification. ExpressOS [34] proves key security invariants
for an OS architecture, using Dafny and abstract interpretation
of Code Contracts. IronFleet [8] proposes a methodology
like ours that slices a system into (Dafny) layers to make
verification of practical distributed system implementations
feasible. They utilize their proposed methodology to build
verified implementations of Paxos and a key-value store. The
Everest project [12] uses F∗ [35] to develop a fully verified and
usable replacement for HTTPS. The Ivy tool [36] leverages
constrained but decidable theories in a framework for verifying
safety properties of distributed systems. Systematic model-
checking approaches as well as integration testing techniques
have also been explored [37], [38].

Verdi [7] is a framework for implementing and verifying
distributed systems in Coq. Verdi is used to verify a (non-
Byzantine) fault tolerant key-value store using Raft consen-
sus [21]. Rahli et al. [39] present a Coq framework for
verifying safety of Byzantine fault-tolerant distributed systems
(PBFT), based on an event-based reasoning approach similar
to EventML, with extraction to OCaml. Sergey et al. [40]
use distributed separation logic to verify a two-phase commit
protocol in Coq. Authors of [41] build a total order broadcast
protocol based on Paxos, specified in EventML [42] and
proved it correct using NuPRL [43]. In contrast to Kaizen
where we generate imperative code, all these approaches con-
sider the compiled extracted functional code the final product.

CompCert [44] is a compiler for a subset of C verified using
Coq. VST [45] builds on CompCert to define Verifiable C, a
program logic for C. In principle, the approach can be used to
refine functional to imperative C code completely inside Coq,
but takes substantially more effort than Kaizen.

Ensemble [46] is one of the earliest distributed systems
for group communication. It layers simple micro protocols
to produce distributed systems, and performs cross-protocol
optimizations. It is written in a functional language, manually
translated to IO automata and verified using NuPRL. Kaizen
separates out skills and required fewer man-months.

X. ACKNOWLEDGEMENTS

This work was supported in part by grants NSF CNS
1409416 and NSF CCF-1527395, and in part by gifts from
Microsoft and Facebook.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[2] “Handbook of digital currency,” D. L. K. Chuen, Ed. San Diego:
Academic Press, 2015.

[3] I. Eyal, “Blockchain technology: Transforming libertarian cryptocur-
rency dreams to finance and banking realities,” Computer, vol. 50, no. 9,
pp. 38–49, 2017.

[4] P. Treleaven, R. G. Brown, and D. Yang, “Blockchain technology in
finance,” Computer, vol. 50, no. 9, pp. 14–17, 2017.

[5] A. Dorri, M. Steger, S. S. Kanhere, and R. Jurdak, “Blockchain: A
distributed solution to automotive security and privacy,” IEEE Commu-
nications Magazine, vol. 55, no. 12, pp. 119–125, 2017.

[6] Y. Bertot and P. Castéran, Interactive Theorem Proving and Program De-
velopment: Coq’Art: The Calculus of Inductive Constructions. Berlin,
Heidelberg: Springer, 2004.

[7] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst,
and T. Anderson, “Verdi: A framework for implementing and formally
verifying distributed systems,” in Conference on Programming Language
Design and Implementation. ACM, 2015, pp. 357–368.

[8] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L.
Roberts, S. Setty, and B. Zill, “IronFleet: proving practical distributed
systems correct,” in Symposium on Operating Systems Principles.
ACM, 2015, pp. 1–17.

[9] K. Q. Ye, M. Green, N. Sanguansin, L. Beringer, A. Petcher, and A. W.
Appel, “Verified correctness and security of mbedTLS HMAC-DRBG,”
in Conference on Computer and Communications Security, 2017, pp.
2007–2020.

[10] A. W. Appel, “Verification of a cryptographic primitive: SHA-256,”
ACM Trans. Program. Lang. Syst., vol. 37, no. 2, pp. 7:1–7:31, 2015.

[11] R. Affeldt, D. Nowak, and K. Yamada, “Certifying assembly with formal
security proofs: The case of BBS,” Science of Computer Programming,
vol. 77, no. 10, pp. 1058 – 1074, 2012, aVoCS’09.

[12] K. Bhargavan, B. Bond, A. Delignat-Lavaud, C. Fournet, C. Hawblitzel,
C. Hritcu, S. Ishtiaq, M. Kohlweiss, R. Leino, J. Lorch, K. Maillard,
J. Pang, B. Parno, J. Protzenko, T. Ramananandro, A. Rane, A. Rastogi,
N. Swamy, L. Thompson, P. Wang, S. Zanella-Béguelin, and J.-K.
Zinzindohoué, “Everest: Towards a verified, drop-in replacement of
HTTPS,” in Summit on Advances in Programming Languages, 2017.

[13] N. Swamy, C. Hritcu, C. Keller, A. Rastogi, A. Delignat-Lavaud,
S. Forest, K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K.
Zinzindohoué, and S. Zanella-Béguelin, “Dependent types and multi-
monadic effects in F*,” in Symposium on Principles of Programming
Languages. ACM, 2016, pp. 256–270.

[14] L. M. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer,
“The Lean theorem prover (system description),” in International Con-
ference on Automated Deduction, 2015, pp. 378–388.

[15] G. Pirlea and I. Sergey, “Mechanising blockchain consensus,” in Con-
ference on Certified Programs and Proofs. ACM, 2018, pp. 78–90.

[16] “Bitcoin,” https://github.com/bitcoin/bitcoin, 2011, last visited: Septem-
ber 26, 2022.

[17] M. Iansiti and K. R. Lakhani, “The Truth About Blockchain,” https://hbr.
org/2017/01/the-truth-about-blockchain, 2017, last visited: September
26, 2022.

[18] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder, Bit-
coin and Cryptocurrency Technologies: A Comprehensive Introduction.
Princeton, NJ, USA: Princeton University Press, 2016.

[19] R. J. Lipton, “Reduction: A method of proving properties of parallel
programs,” Commun. ACM, vol. 18, no. 12, pp. 717–721, Dec. 1975.

[20] G. Agha, Actors: A Model of Concurrent Computation in Distributed
Systems. Cambridge, MA, USA: MIT Press, 1986.

[21] D. Woos, J. R. Wilcox, S. Anton, Z. Tatlock, M. D. Ernst, and
T. Anderson, “Planning for change in a formal verification of the Raft
consensus protocol,” in Conference on Certified Programs and Proofs.
ACM, 2016, pp. 154–165.

[22] J.-C. Filliâtre and P. Letouzey, “Functors for proofs and programs,” in
Programming Languages and Systems. Berlin, Heidelberg: Springer,
2004, pp. 370–384.

[24] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold,
M. Hibler, C. Barb, and A. Joglekar, “An integrated experimental
environment for distributed systems and networks,” in Symposium on

[23] K. R. M. Leino, “Dafny: An automatic program verifier for functional
correctness,” in Logic for Programming, Artificial Intelligence, and
Reasoning. Berlin, Heidelberg: Springer, 2010, pp. 348–370.

Operating Systems Design and Implementation. Boston, MA: USENIX
Association, 2002, pp. 255–270.

[25] “Bitcoin Regtest Mode,” https://bitcoin.org/en/developer-examples#
regtest-mode, 2011, last visited: September 26, 2022.

[26] “Blockchain,” http://blockchain.info, 2017, last visited: September 26,
2022.

[27] A. Tar, “Proof of Work, Explained,” https://cointelegraph.com/explained/
proof-of-work-explained, 2017, last visited: September 26, 2022.

[28] J. Garay, A. Kiayias, and N. Leonardos, “The Bitcoin backbone protocol:
Analysis and applications,” in Advances in Cryptology - EUROCRYPT.
Berlin, Heidelberg: Springer, 2015, pp. 281–310.

[29] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros:
A provably secure proof-of-stake blockchain protocol,” in CRYPTO.
Springer, 2017, pp. 357–388.

[30] R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain protocol
in asynchronous networks,” in Advances in Cryptology - EUROCRYPT.
Cham: Springer, 2017, pp. 643–673.

[31] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling Byzantine agreements for cryptocurrencies,” in Symposium on
Operating Systems Principles. ACM, 2017, pp. 51–68.

[32] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “seL4: Formal verification of an OS kernel,”
in Symposium on Operating Systems Principles, 2009, pp. 207–220.

[33] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang,
and B. Zill, “Ironclad apps: End-to-end security via automated full-
system verification,” in Symposium on Operating Systems Principles,
2014, pp. 165–181.

[34] H. Mai, E. Pek, H. Xue, S. T. King, and P. Madhusudan, “Verifying
security invariants in ExpressOS,” in International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems.
ACM, 2013, pp. 293–304.

[35] J. Protzenko, J.-K. Zinzindohoué, A. Rastogi, T. Ramananandro,
P. Wang, S. Zanella-Béguelin, A. Delignat-Lavaud, C. Hriţcu, K. Bhar-
gavan, C. Fournet, and N. Swamy, “Verified low-level programming
embedded in F*,” Proc. ACM Program. Lang., vol. 1, no. ICFP, pp.
17:1–17:29, 2017.

[36] O. Padon, K. L. McMillan, A. Panda, M. Sagiv, and S. Shoham,
“Ivy: Safety verification by interactive generalization,” in Conference
on Programming Language Design and Implementation. ACM, 2016,
pp. 614–630.

[37] A. Desai, V. Gupta, E. Jackson, S. Qadeer, S. Rajamani, and D. Zufferey,
“P: Safe asynchronous event-driven programming,” in Conference on
Programming Language Design and Implementation. ACM, 2013, pp.
321–332.

[38] S. Liu, S. Nguyen, J. Ganhotra, M. R. Rahman, I. Gupta, and
J. Meseguer, “Quantitative analysis of consistency in NoSQL key-value
stores,” in Quantitative Evaluation of Systems. Cham: Springer, 2015,
pp. 228–243.

[39] V. Rahli, I. Vukotic, M. Völp, and P. Esteves-Verissimo, “Velisarios:
Byzantine fault-tolerant protocols powered by Coq,” in Programming
Languages and Systems. Cham: Springer, 2018, pp. 619–650.

[40] I. Sergey, J. R. Wilcox, and Z. Tatlock, “Programming and Proving
with Distributed Protocols,” PACMPL, vol. 2, no. POPL, pp. 28:1–28:30,
2018.

[41] N. Schiper, V. Rahli, R. Van Renesse, M. Bickford, and R. L. Consta-
ble, “Developing correctly replicated databases using formal tools,” in
International Conference on Dependable Systems and Networks. IEEE,
2014, pp. 395–406.

[42] V. Rahli, “Interfacing with proof assistants for domain specific program-
ming using EventML,” in International Workshop On User Interfaces
for Theorem Provers.

[43] R. Constable, S. Allen, H. Bromley, W. Cleaveland, J. Cremer, R. Harper,
D. Howe, T. Knoblock, N. Mendler, P. Panangaden et al., Implementing
mathematics. Prentice-Hall, 1986.

[44] X. Leroy, “Formal verification of a realistic compiler,” Commun. ACM,
vol. 52, no. 7, pp. 107–115, 2009.

[45] A. W. Appel, “Verified software toolchain,” in Programming Languages
and Systems. Berlin, Heidelberg: Springer, 2011, pp. 1–17.

[46] M. G. Hayden, “The Ensemble system,” Ph.D. dissertation, Ithaca, NY,
USA, 1998.

https://bitcoin.org/bitcoin.pdf
https://github.com/bitcoin/bitcoin
https://hbr.org/2017/01/the-truth-about-blockchain
https://hbr.org/2017/01/the-truth-about-blockchain
https://bitcoin.org/en/developer-examples#regtest-mode
https://bitcoin.org/en/developer-examples#regtest-mode
http://blockchain.info
https://cointelegraph.com/explained/proof-of-work-explained
https://cointelegraph.com/explained/proof-of-work-explained

	Introduction
	Background
	Blockchains and Bitcoin
	Verification paradigms
	System Model

	The Kaizen Framework
	Refinement methodology based on movers:
	Kaizen refinement stages

	Stage I: Refinements in Coq
	Phase 1: Protocol specification and verification
	Phase 2: Initial protocol refinement

	Stage II: Refinements in Dafny
	Phase 3: Protocol translation to Dafny
	Phase 4: Refinement to imperative code in Dafny
	Phase 5: Performance optimizations & Dafny refinements

	Stage III: Refinements in C#
	Phase 6: Application specific functions
	Phase 7: Building a connected system & optimizations

	Evaluation
	Experimental Setup
	Results

	Lessons Learnt and Discussion
	Related Work
	Acknowledgements
	References

