
FO-Complete Program Verification for Frame Logic

ADITHYA MURALI, University of Illinois Urbana-Champaign, USA
HRISHIKESH BALAKRISHNAN, University of Illinois Urbana-Champaign, Department of Computer
Science, USA
AARON COUNCILMAN, University of Illinois Urbana-Champaign, Department of Computer Science,
USA
P. MADHUSUDAN, University of Illinois Urbana-Champaign, Department of Computer Science, USA

We develop techniques for automating program verification for specifications in frame logic. Frame Logic is a
logic for specifying properties of heap manipulating programs that is based on first order logic with recursive
definitions (FORD) that has a support operator akin to implicit heaplets in separation logic. We develop a
FO-complete automatic verification technique for programs annotated with frame logic specifications using a
novel verification condition generation followed by reasoning in FORD using the technique of natural proofs.
We implement a tool that realizes our technique and show its efficacy on a suite of benchmarks that manipulate
data structures. We also develop a separation logic with an alternate semantics that can be converted to frame
logic to realize FO-complete program reasoning.

1 INTRODUCTION
Automated verification of programs that destructively manipulate heaps remains a challenging open
problem. Separation logic has emerged as a popular specification logic for expressing properties
of structures in heaps. While separation logic is used extensively in interactive theorem proving
settings, automation of separation logic reasoning has not yet met the same level of success.
One problem for automation of separation logic is that several aspects of it are inherently

second-order, making it extremely hard to automatically reason with, even incompletely, using
engines such as SMT solvers that are based on first-order logic. In particular, the magic wand
(−∗) in separation logic quantifies over arbitrary heaps that satisfy a property, which is inher-
ently second-order [Brochenin et al. 2008]. The magic wand arises in many settings in program
verification, especially in order to express weakest preconditions and in expressing loop invari-
ants [O’Hearn 2012; Reynolds 2002]. Separation logic reasoning tools evaluated in competitions
(like SLComp [Sighireanu 2021]) seldom support the magic-wand operator and attest to the diffi-
culty of reasoning with it. Even if the magic wand is avoided (like using incomplete strongest post
calculations, like in [Berdine et al. 2005]), expressing properties such as separating conjunction, con-
junction, and disjunction requires quantifying over sets of locations, and when proving implication
or entailment, result in formulas with both existential and universal quantification over sets that
are hard to reason with.
Frame Logic. Recently, a new logic called frame logic (FL) was proposed by Murali et al. that
embraces the principles of separation logic but works in a first-order logic setting with recursive
definitions (FORD) [Murali et al. 2023, 2020]. Frame logic (FL) is aesthetically very simple— it adds
to first-order logic with recursive definitions a support operator Sp, where Sp(𝛼), for any formula
𝛼 , evaluates to a subset of locations of the heap that the truthhood/falsehood of 𝛼 relies upon. The
support is similar to local heaplets in separation logic. However, unlike separation logic, supports
are uniquely defined, which allows modeling them without true quantification.

Instead of relying on a localized heaplet semantics as separation logic does, frame logic keeps the
classical semantics of FORD over the global heap, but allows recovering the local heaplet using the
support operator. Frame logic can express the separating conjunct — 𝛼 ∗ 𝛽 is essentially expressed
as 𝛼 ∧ 𝛽 ∧ Sp(𝛼) ∩ Sp(𝛽) = ∅. It also supports frame reasoning: if 𝛼 holds in a heap and Sp(𝛼) is
not modified by a program mutating the heap, then 𝛼 continues to hold.

1

HTTPS://ORCID.ORG/0000-0002-6311-1467
HTTPS://ORCID.ORG/
HTTPS://ORCID.ORG/
HTTPS://ORCID.ORG/0000-0002-9782-721X


Trovato et al.

The primary goal of this paper is to develop automated SMT-based approaches for reasoning with
programs annotated with frame logic specifications.

Work on frame logic by Murali et al [Murali et al. 2020] has argued that weakest preconditions
for programs with frame logic annotations are expressible in frame logic itself, and that verification
conditions in frame logic can be translated to FORD. However, this does not translate to automation
as FORD with alternating quantifiers is highly complex. The weakest precondition transformations
described in [Murali et al. 2023, 2020] are complex, involving several introductions of quantifiers
(including existential quantification) leading to weakest preconditions having alternations of
universal and existential quantification. Furthermore, the weakest preconditions introduce first-
order formulations of magic wand (“MW-operators”) that have gnarly definitions that are too
complex to provide automation for.

Automation using Natural Proofs and the FO-Complete Fragment Loneway. In this paper, we
approach automated verification of frame logic afresh with the goal of embedding verification
conditions in a known automatable class of first-order logic with recursive definitions (FORD).
The technique of natural proofs is a well-established technique for handling such logics— it uses
recursive definition unfoldings, uninterpreted function abstractions, and SMT-based quantifier-free
reasoning to build sound automated reasoning [Pek et al. 2014; Qiu et al. 2013]. Furthermore, the
work on its foundations [Löding et al. 2018] identifies particular fragments for which the natural
proofs technique is 𝐹𝑂-complete. More precisely, the work shows that when recursive definitions
are abstracted to be fixpoints rather than least fixpoints, the properties are expressible in first-order
logic and natural proofs heuristics are complete for this interpretation. The work in [Löding et al.
2018] posits that the efficacy in practice of the natural proofs technique is perhaps due to the
completeness of this technique.
Our goal is to provide automated reasoning for programs with frame logic specifications that

is also 𝐹𝑂-complete in the above sense. In order to achieve this, we need to generate verification
conditions that are sound and complete, and also ensure that the verification conditions are in the
fragment 𝐿oneway for which natural proofs are known to be 𝐹𝑂-complete. 𝐿oneway has an uninterpreted
foreground sort and multiple background sorts and has two restrictions: (a) existential quantification
is allowed only over the foreground sort, and (b) uninterpreted functions from background sorts to
the foreground sort are disallowed (functions are "one-way").

Generating Verification Conditions in Loneway. The first contribution of this paper is to build
a program verification paradigm for reasoning with programs with frame logic annotations that
generates verification conditions in the logic 𝐿oneway . This leads to 𝐹𝑂-complete automation using
the natural proofs technique. We overcome several challenges for obtaining such a translation
using novel ideas that we describe below.

First, we have to choose a frame logic that disallows quantification. However, recursive definitions
of data structures typically use existential quantification in order to recurse on smaller data
structures. We introduce a new cloud operator ([·]) that removes a special form of existential
quantification our logic provides.

Second, we need to generate verification conditions with care so that they are in the 𝐿oneway frag-
ment and have existential quantification only over the foreground sort. The verification conditions
are generated using strongest-post like symbolic evaluation rather than weakest preconditions. We
also introduce frame reasoning when heaps are updated using universally quantified FO formula in
𝐿oneway (earlier work on frame logic did not do any frame reasoning [Murali et al. 2023, 2020]). Frame
reasoning is crucial when using techniques such as natural proofs as they allow simpler ways to
show properties are maintained when heaps are modified, which otherwise may require induction
and evade natural proofs reasoning. The earlier work on frame logic [Murali et al. 2023, 2020] did

2



FO-Complete Program Verification for Frame Logic

not address handling of function calls, and we show new mechanisms to capture “havoc”-ing the
implicit heaplet (support of the precondition of the called function) and associated frame reasoning
while staying within the logic 𝐿oneway . Finally, our program verification framework also handles
memory safety using implicit supports— the allocated set is assumed to be the support of the
precondition and we check that all dereferences are within the allocated set.

The Frame Logic Verifier (FLV) Tool and Evaluation. The second contribution of this paper is an
implementation and evaluation of our automated verification technique for a simple programming
language that destructively updates heaps against frame logic specifications. Our tool FLV (Frame
Logic Verifier) generates verification conditions in first-order logic with recursive definitions, in
particular in the logic 𝐿oneway , and utilizes an existing tool to do natural proofs reasoning [Löding
et al. 2018; Pek et al. 2014; Qiu et al. 2013]. We allow users to write additional lemmas that they
believe can be proved using the lemma itself as the induction hypothesis, and the tool converts the
required inductive proof (using the pre-fixpoint) and disposes its verification using natural proofs.

We evaluate our verification methodology by utilizing the FLV tool to verify a suite of programs
that manipulate common data structures. The specifications written in frame logic are fairly
complete functional specifications of the methods. Furthermore, we share the experience of one
of the co-authors, who was not involved in the development of the tool, but who wrote all the
programs and specifications in frame logic, especially in writing support specifications, debugging
specifications, and the interaction methodology and experience with the tool.

New Pathways for Automation of Separation Logic:. We posit that our work can pave new
pathways for automating other logics, like separation logic, through a translation to frame logic.
As we argued earlier, standard semantics for separation logic makes it hard to automate using FO
solvers. The third contribution of this paper is a separation logic with alternate semantics inspired
by frame logic (SL-FL) that ensures determined heaplets. We show that this separation logic can be
translated to frame logic, where the tight heaplets in separation logic correspond to supports in
frame logic. Utilizing the automation for frame logic that we have developed, this shows that the
new separation logic is amenable to FO-complete program verification as well.

Summary. We propose techniques and tools that provide automation in reasoning with programs
against specifications written in frame logic, a powerful logic that extends first-order logic with
recursive definitions with implicit supports. The primary contributions are:

• A universal fragment of frame logic that allows restricted forms of guarded existential quantifi-
cation that can be removed using a novel cloud operator.
• An automated program verification methodology that uses verification condition generation
in the logic 𝐿oneway , which is automated using natural proofs and SMT reasoning that provides
𝐹𝑂-complete reasoning.
• The development of the tool FLV that realizes the verification methodology, and an evaluation of
the technique and the tool on a suite of programs that manipulate data structures.
• A separation logic with alternate semantics that can be translated to frame logic, thereby showing
FO-complete automated program verification for this separation logic.

2 FRAME LOGIC AND PROGRAM VERIFICATION
In this section, we describe some preliminaries on Frame Logic and the notion of validity for Hoare
Triples that we automate in this work. Crucially, we add a new cloud operator [·] to Frame Logic
that facilitates expressing properties without quantification.

3



Trovato et al.

2.1 First-Order Logic with Recursive Definitions (FORD)
Frame Logic extends First-Order Logic with Recursive Definitions (FORD). FORD is similar to
first-order logic with least fixpoints [Aho and Ullman 1979; Chandra and Harel 1980; Immerman
1982; Libkin 2004; Vardi 1982], except recursive definitions (which have least fixpoint semantics)
are given names.

Formally, we have a signature Σ = (S, C, F ,R,I) where S is a finite set of sorts, and C, F and
R are sets of constant, function, and relation symbols respectively. I is a set of relation symbols
disjoint from R whose interpretations are given using recursive definitions (as opposed to being
interpreted by a model). Symbols have their usual types, e.g., function symbols in F have an
associated arity 𝑛 ∈ N and are of type 𝜏1 × 𝜏2 . . . × 𝜏𝑛 → 𝜏 , where 𝜏𝑖 , 𝜏 ∈ S.
We require that S contain a designated foreground sort Loc. We use the foreground sort to

model heap locations. The remaining sorts, called background sorts, are used to model data values
such as integers, sets, etc. We use the function symbols in F to model pointers and data fields of
heap locations. For example, the next pointer of a linked list can be modeled using the symbol
next : Loc → Loc, and similarly, the key stored at a location can be modeled using key : Loc → Int.
We do not provide the syntax of FORD here as it is essentially identical to the syntax of Frame

Logic given in Figure 1, except that FORD does not contain the support operator Sp(·) and cloud
operator [·].
Recursive Definitions. A recursive definition of a predicate 𝐼 ∈ I is of the form

𝐼 (𝑥) :=lfp 𝜌 (𝑥)
where 𝜌 is a quantifier-free formula that only mentions recursively defined symbols in I positively
(i.e., under an even number of negations). This ensures that least fixpoints always exist [Tarski
1955]. We formally treat recursively defined functions by modeling them as predicates, however,
we will use function symbols with recursive definitions in our exposition. We denote the set of
definitions for the symbols in I by D. We require that D contains exactly one definition for each
𝐼 ∈ I.
Semantics. We consider first-order models where the foreground sort Loc is uninterpreted and the
background sorts are constrained by a first-order theory. This theory is usually the combination of
several theories over individual sorts such that the quantifier-free fragment of the combination is
decidable [Nelson and Oppen 1979].

Given a set of definitionsD for the symbols in I, a model of FORD consists of a first-order model
of the above kind that interprets the symbols in C, F , and R (respecting the various theories), as
well as an interpretation for the symbols in I that is determined by the first-order model as the
least fixpoint of the definitions D. Formulas are then evaluated as usual.
The Loneway Fragment. 𝐿oneway is a syntactic fragment of FORD introduced in prior work [Löding
et al. 2018] which allows only “one-way" functions from the foreground sort to the background
sorts. Formally, every function symbol in F of arity 𝑛 whose range sort is the foreground sort
Loc has domain Loc𝑛 . Recursively defined symbols I of arity 𝑘 are of type Loc𝑘 . Finally, formulas
are only allowed to quantify existentially over Loc (for validity). Validity checking for formulas in
𝐿oneway can be automated effectively using a systematic quantifier-instantiation procedure [Löding
et al. 2018] based on Natural Proofs [Pek et al. 2014; Qiu et al. 2013] that is complete with respect
to a fixpoint abstraction of recursive definitions (rather than the true least fixpoint semantics). In
Section 3 we describe a VC generation mechanism that reduces the correctness of Hoare Triples to
the validity of Frame Logic formulas. In Section 4 we describe how to translate the generated FL
formulas to FORD formulas in 𝐿oneway , as well as the relatively complete procedure for reasoning
with them.

4



FO-Complete Program Verification for Frame Logic

FL Formulas 𝜑 B ⊥ | ⊤ | 𝑡 = 𝑡 | 𝑅(𝑡1 . . . , 𝑡𝑚) | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 | ¬𝜑
| ite(𝛾 : 𝜑, 𝜑) | ∃𝑦 : 𝑦 = 𝑓 (𝑥). 𝜑
where 𝑅 ∈ R ∪ I, 𝑦 ∈ VarLoc, 𝑓 ∈ F𝑚

Guards 𝛾 B 𝑡 = 𝑡 | 𝑅(𝑡1 . . . , 𝑡𝑚) | 𝛾 ∧ 𝛾 | 𝛾 ∨ 𝛾 | ¬𝛾 | 𝑖𝑡𝑒 (𝛾 : 𝛾,𝛾)
where 𝑅 ∈ R, 𝑡𝑖 , 𝑡 are not of type Set (Loc)

Terms 𝑡 B 𝑐 | 𝑥 | 𝑓 (𝑡1 . . . , 𝑡𝑚) | 𝑖𝑡𝑒 (𝛾 : 𝑡, 𝑡)
| Sp(𝜑) | Sp(𝑡 ′) if 𝑡 is of type Set (Loc)
where 𝑐 is a constant, 𝑥 is a variable of the appropriate type

Fig. 1. Frame Logic with guarded quantification. VarLoc denotes variables over the foreground sort and
Set (Loc) denotes the sort consisting of sets of foreground elements. Terms and formulas are assumed to be
well-typed for simplicity of presentation.

2.2 Frame Logic with GuardedQuantification
Frame Logic (FL) [Murali et al. 2023, 2020] extends FORD with a support operator Sp(·). For a
formula 𝜑 (term 𝑡 ), Sp(𝜑) denotes the subset of locations (foreground elements) on which the truth
of 𝜑 (resp. value of 𝑡 ) depends. In the context of heaps, the support can be thought of as the “heaplet”
of 𝜑 . FL uses the Sp operator to state disjointness and reason about framing, e.g., the formula
List (𝑥) ∧ List (𝑦) ∧ Sp(List (𝑥)) ∩ Sp(List (𝑦)) = ∅ says that 𝑥 and 𝑦 point to disjoint linked lists.
Syntax. In this work, we use a fragment of FL with guarded quantification shown in Figure 1.
Formally, we distinguish a set of mutable functions F𝑚 among the symbols in F with domain Loc
that model pointer and data fields over the foreground sort. We also require a background sort
Set (Loc) representing sets of foreground locations, and define Sp(𝜑) as a term of type Set (Loc). We
utilize in the syntax ite (“if-then-else”) expressions over terms and formulas, where ite(𝛾 : 𝛼, 𝛽)
denotes “if 𝛾 holds then 𝛼 else 𝛽”. Note that the guard 𝛾 cannot mention inductively defined
predicates or terms of type Set (𝐿𝑜𝑐), including support expressions. These are technical restrictions
that are required to define a well-defined semantics for Frame Logic formulas.
We also allow formulas with guarded quantification of the form ∃𝑦 : 𝑦 = 𝑓 (𝑥). 𝜑 (𝑦) where 𝑦 is

a variable over the foreground sort Loc. The truth value of this formula is the same as ∃𝑦 : 𝑦 =

𝑓 (𝑥) ∧ 𝜑 (𝑦), but its support is defined more carefully. We describe this below.
Semantics. Since FL merely extends FORD with the Sp(·) operator, we elaborate on the semantics
of 𝑆𝑝 here. We define this as a set of recursive equations in Figure 2. Given a model𝑀 , the support
of a formula 𝛼 in𝑀 (resp. term), denoted ⟦Sp(𝛼)⟧𝑀 , is the least fixpoint of the equations in Figure 2.

The support can be understood as the set of locations (i.e., “heaplet”) on which mutable functions
must be applied (i.e., dereferenced) in order to compute the value of a given term or formula. The
support of constants is empty. The support of a term 𝑓 (𝑡) in𝑀 for a mutable function 𝑓 ∈ F𝑚 is,
as expected, {⟦𝑡⟧𝑀 }. The application of a non-mutable function does not contribute to the support.
The support of 𝛼 ∧ 𝛽 is intuitively the union of the supports of 𝛼 and 𝛽 , and this is indeed the

case in FL. Note, however, that the support of 𝛼 ∨ 𝛽 is also the union of the supports of 𝛼 and 𝛽 .
This is because Frame Logic defines a unique support for a formula regardless of its truth value. We
can also see this reflected in the definition of Sp(¬𝛼), which is equal to Sp(𝛼). This is different
from, say, Separation Logic [Demri and Deters 2015; O’Hearn 2012; Reynolds 2002], where the
heaplet of 𝛼 ∨ 𝛽 is the heaplet of any of the disjuncts that evaluate to true (formulas can have
multiple heaplets). Unique heaplets are a salient feature of FL, and the logic makes several design
decisions to achieve this. We point the reader to prior work [Murali et al. 2023] for a discussion on
the ramifications of these design decisions.

5



Trovato et al.

⟦Sp(𝑐)⟧𝑀 = ⟦Sp(𝑥)⟧𝑀 = ∅ for constant 𝑐 , variable 𝑥
⟦Sp(⊤)⟧𝑀 = ⟦Sp(⊥)⟧𝑀 = ∅

⟦Sp(Sp(𝑡))⟧𝑀 = ⟦Sp(𝑡)⟧𝑀
⟦Sp(𝑡1 = 𝑡2)⟧𝑀 = ⟦Sp(𝑡1)⟧𝑀 ∪ ⟦Sp(𝑡2)⟧𝑀
⟦Sp(𝛼 ∧ 𝛽)⟧𝑀 = ⟦Sp(𝛼)⟧𝑀 ∪ ⟦Sp(𝛽)⟧𝑀
⟦Sp(𝛼 ∨ 𝛽)⟧𝑀 = ⟦Sp(𝛼)⟧𝑀 ∪ ⟦Sp(𝛽)⟧𝑀
⟦Sp(Sp(𝜑))⟧𝑀 = ⟦Sp(𝜑)⟧𝑀
⟦Sp(¬𝜑)⟧𝑀 = ⟦Sp(𝜑)⟧𝑀
⟦Sp(𝐼 (𝑡))⟧𝑀 = ⟦Sp(𝜌𝐼 (𝑡))⟧𝑀

for 𝐼 ∈ I with definition
𝐼 (𝑥) :=lfp 𝜌𝐼 (𝑥)

⟦Sp(𝑅(𝑡1 . . . , 𝑡𝑛))⟧𝑀 =

𝑛⋃
𝑖=1
⟦Sp(𝑡𝑖 )⟧𝑀 for 𝑅 ∈ R

⟦Sp(𝑓 (𝑡1 . . . , 𝑡𝑛))⟧𝑀 =

𝑛⋃
𝑖=1
{⟦𝑡𝑖⟧𝑀 } ∪

𝑛⋃
𝑖=1
⟦Sp(𝑡𝑖 )⟧𝑀 if 𝑓 ∈ F𝑚

⟦Sp(𝑓 (𝑡1 . . . , 𝑡𝑛))⟧𝑀 =

𝑛⋃
𝑖=1
⟦Sp(𝑡𝑖 )⟧𝑀 if 𝑓 ∉ F𝑚

⟦Sp(ite(𝛾 : 𝑡1, 𝑡2))⟧𝑀 = ⟦Sp(𝛾)⟧𝑀 ∪
{
⟦Sp(𝑡1)⟧𝑀 if𝑀 |= 𝛾

⟦Sp(𝑡2)⟧𝑀 if𝑀 ̸ |= 𝛾

⟦Sp(ite(𝛾 : 𝛼, 𝛽))⟧𝑀 = ⟦Sp(𝛾)⟧𝑀 ∪
{
⟦Sp(𝛼)⟧𝑀 if𝑀 |= 𝛾

⟦Sp(𝛽)⟧𝑀 if𝑀 ̸ |= 𝛾

⟦Sp(∃𝑦 : 𝑦 = 𝑓 (𝑥) . 𝜑)⟧𝑀 = {⟦𝑥⟧𝑀 } ∪ ⟦Sp(𝜑)⟧𝑀 [𝑦←𝑢 ]
where 𝑢 = ⟦𝑓 (𝑥)⟧𝑀

Fig. 2. Semantics of Support operator. ⟦𝑒⟧𝑀 refers to the interpretation of an expression 𝑒 in a model𝑀 . The
support is defined as the least interpretation satisfying the given equations.

The support of ite(𝛾 : 𝛼, 𝛽) always includes the support of 𝛾 (since we need to evaluate 𝛾 to
determine the truth of the formula), but then only adds the support of the case that is evaluated
depending on 𝛾 . We use the ite rather than ∨ to write expressions with finer-grained supports in
FL. The support of an inductively defined relation term Sp(𝐼 (𝑥)) is simply the support of the body
of the definition Sp(𝜌 (𝑥)). The body 𝜌 may of course mention 𝐼 recursively, and the support is the
least fixpoint of these equations.
Finally, the support of ∃𝑦 : 𝑦 = 𝑓 (𝑥). 𝜑 (𝑦) contains the location interpreted by 𝑥 , as well as the

support of 𝜑 (𝑦) where 𝑦 is interpreted to be location corresponding to 𝑓 (𝑥) in the given model.
Note that although the formula evaluates the same as ∃𝑦.𝑦 = 𝑓 (𝑥) ∧𝜑 (𝑦), its support only includes
the support of 𝜑 for values of 𝑦 ‘matching’ the guard, namely 𝑓 (𝑥).

2.3 Program Verification
We now describe a programming language and the notion of correctness for which we develop
automation in this work.
Figure 3 describes the syntax of the language. It supports the typical commands including

mutation of fields, allocation, and deallocation of locations. The language also supports function
calls, including recursive calls 1.
Operational Semantics. We consider configurations of the form (𝑆, 𝐻,𝐴) where 𝑆 is a store, 𝐻
is a heap, and 𝐴 denotes the set of allocated locations. Formally, 𝑆 is a partial map that interprets
constants, variables, and non-mutable functions. 𝐻 is a tuple of maps— one for each mutable
function 𝑓 ∈ F𝑚— whose domain is the universe of locations and range is the universe of the
appropriate sort (locations for pointers and various background sorts for data fields). We model nil
as a distinguished location, ensuring in our semantics that valid programs do not dereference nil.
Note that 𝑆 and 𝐻 together define a model where one can interpret FL formulas. We denote the

1We do not include while loops in the formal syntax to simplify the technical exposition. However, our theory readily
extends to programs with iteration, with specifications including frame logic assertions as loop invariants.

6



FO-Complete Program Verification for Frame Logic

𝑃 F 𝑥 B 𝑦 | 𝑥 B 𝑐 | 𝑣 B 𝑏𝑒 | 𝑥 B 𝑦.𝑓 | 𝑣 B 𝑦.𝑑 | 𝑦.𝑓 B 𝑥 | 𝑦.𝑓 B 𝑐 | 𝑦.𝑑 B 𝑣 | 𝑦.𝑑 B 𝑏𝑒

| alloc(𝑥) | free(𝑥) | 𝑞 B 𝑔(𝑝) | assume(𝜂) | 𝑃 ; 𝑃 | if 𝜂 then 𝑃 else 𝑃 | return

Fig. 3. The syntax of the programming language. Here, 𝑥,𝑦 are location variables of type 𝐿𝑜𝑐 , 𝑐 is a location
constant, 𝑓 is a pointer of type 𝐿𝑜𝑐 → 𝐿𝑜𝑐 , 𝑑 is a data field of type 𝐿𝑜𝑐 → 𝜏bs for some background sort 𝜏bs,
𝑏𝑒 is a background expression, 𝑣 is a variable of a background sort, 𝜂 is a boolean expression without any
dereferences. Finally, 𝑔 is a function of type 𝜏1 × · · · × 𝜏𝑚 → 𝜏 ′1 × · · · × 𝜏

′
𝑛 for some𝑚,𝑛 where 𝜏𝑖 , 𝜏 ′𝑖 ∈ S. This

is a method whose body is itself a program whose variables are a superset of the input variables 𝑝𝑖 of type 𝜏𝑖
and the output variables 𝑞 𝑗 of type 𝜏 ′𝑗 .

satisfaction of an SL formula 𝜑 on the model corresponding to a given 𝑆, 𝐻 by 𝑆, 𝐻 |= 𝜑 .𝐴 is a subset
of the universe of locations that does not contain nil. We also introduce an error configuration ⊥.

We describe the operational semantics of various commands manipulating such configurations
in Appendix A. The semantics is fairly standard, but we elucidate some key aspects here. First, the
operational semantics checks that dereferences are memory safe, i.e., that the lookup or mutation
of 𝑥 .𝑓 only occurs when 𝑥 belongs to the allocated set 𝐴 (in particular, 𝑥 is not nil). If this does
not hold, then the error state ⊥ is reached. We define ⊥ to be a sink state, and any command on
⊥ transitions to ⊥ itself. Second, allocation adds a fresh location (a new element distinct from all
the locations in the current universe) to the universe of locations and to the allocated set 𝐴. The
heap 𝐻 is also extended, mapping the new location to fixed default values default𝑓 for each 𝑓 ∈ F𝑚 .
Correspondingly, deallocation removes the deallocated location from 𝐴. We do not allow double
deallocation, and doing so reaches the error state ⊥. Finally, functions have call-by-value semantics.
We denote a transition between configurations 𝐶1 and 𝐶2 on a program 𝑃 according to the opera-
tional semantics by 𝐶1

𝑃−→ 𝐶2.
Hoare Triples andValidity. We consider triples of the form {𝛼} 𝑃 {𝛽}where𝛼 and 𝛽 are quantifier-
free frame logic formulas and 𝑃 is a program in the above language. We treat free variables in 𝛼

and 𝛽 as constants, implicitly quantifying over them universally. We then define:

Definition 2.1 (Hoare Triple Validity). {𝛼} 𝑃 {𝛽} is valid if for every configuration (𝑆, 𝐻,𝐴) such
that (𝑆, 𝐻 ) |= 𝛼 and ⟦Sp(𝛼)⟧(𝑆,𝐻 ) = 𝐴:

(1) (𝑆, 𝐻,𝐴) does not transition to ⊥ on 𝑃 according to the operational semantics, and
(2) if (𝑆, 𝐻,𝐴) 𝑃−→ (𝑆 ′, 𝐻 ′, 𝐴′), then (𝑆 ′, 𝐻 ′) |= 𝛽 and ⟦Sp(𝛽)⟧(𝑆 ′,𝐻 ′ ) = 𝐴′

Note that we require the allocated set in the post-state to be equal to the support of the postcon-
dition.

Informally, the above definition says that the Hoare Triple is valid if starting from any configura-
tion satisfying the precondition where the allocated set is precisely the support of the precondition,
(a) the program does not behave erroneously (e.g., make unsafe dereferences or free twice), and (b)
if it reaches a final configuration then the postcondition must hold, with the allocated set in the
post state precisely equal to the support of the postcondition.
Relaxed Postconditions.We introduce a modifier 𝑅𝑃 for postconditions, read relaxed post, to indicate
that the allocated set in the post-state need not be ‘tight’ for the postcondition. We denote these
triples by {𝛼} 𝑃 {𝑅𝑃 : 𝛽}. Their correctness is defined similarly to that of {𝛼} 𝑃 {𝛽} above, except in
condition (2) we only require ⟦Sp(𝛽)⟧(𝑆 ′,𝐻 ′ ) ⊆ 𝐴′.
AOne-Way Fragment of FL. In this work we design our VC generation and reasoning mechanisms
to ensure that the resulting formulas belong to the 𝐿oneway fragment of FORD containing ‘one-way’
functions. To ensure this we define a fragment of frame logic called 𝐹𝐿oneway that only admits

7



Trovato et al.

one-way functions. Formally, we require in 𝐹𝐿oneway that every function symbol in F of arity 𝑛
whose range is the foreground sort (Loc) has domain Loc𝑛 . Further, recursively defined symbols
in I of arity 𝑘 have domain Loc𝑘 . These restrictions do not hamper expressive specifications in
practice, and indeed we write specifications for various data structure manipulating programs in
𝐹𝐿oneway (see Section 6).
Note that our VC generation (Section 3) as well as reasoning (Section 4) mechanisms are quite

general and can be applied to specifications written in the entire FL fragment (Figure 1). However,
when specifications are written in 𝐹𝐿oneway , the resulting VCs can be converted to formulas in
𝐿oneway where the reasoning mechanism we use is complete with respect to the FO (i.e., fixpoint)
semantics of recursive definitions.

2.4 EliminatingQuantification Using the Cloud Operator
Quantification, restricted in form though it may be, presents a problem for automation. This is
especially true when considering quantification that occurs inside inductive definitions. In this
work we wish to work over quantifier-free specifications, generating quantifier-free verification
conditions in the 𝐿oneway fragment. However, one cannot eliminate quantification easily. For example,
a definition expressing that 𝑥 points to a linked list is written in FL as follows [Murali et al. 2023]:

List (𝑥) :=lfp ite(𝑥 = nil,⊤, ∃𝑦 : 𝑦 = next (𝑥). List (𝑦) ∧ 𝑥 ∉ Sp(List (𝑦))) (1)

where an existential quantifier is used in the above definition to say that when 𝑥 ≠ nil, then 𝑦, the
“next” location of 𝑥 must point to a linked list such that 𝑥 does not belong to the support of List (𝑦)2.

It is tempting to think that the quantifier can be eliminated by simply replacing 𝑦 with next (𝑥)
in the above definition. However, the second conjunct under the quantifier then becomes 𝑥 ∉

Sp(List (next (𝑥))), which does not hold because the support of a formula that mentions next (𝑥)
always contains 𝑥3.

In this work we introduce a new operator called the Cloud operator, denoted by square brackets [·].
The cloud of a formula (resp. term) 𝛼 is a formula [𝛼] that evaluates the same way as 𝛼 , but whose
support is empty. Simply, [𝛼] treats 𝛼 as a support-less expression. We extend Frame Logic with
the cloud operator, which allows us to rewrite the above definition of List without quantification:

List (𝑥) :=lfp ite(𝑥 = nil, ⊤, next (𝑥) = next (𝑥) ∧ List ( [next (𝑥)]) ∧ 𝑥 ∉ Sp(List ( [next (𝑥)]))) (2)

where all occurrences of 𝑦 are replaced with [next (𝑥)]. We also add the tautological conjunct
next (𝑥) = next (𝑥) to ensure that the support of the resulting formula still contains {𝑥}. We capture
this transformation formally below.
Formally, we define the semantics of the cloud operator as follows:

Sp( [𝜑]) = ∅ and 𝑀 |= [𝛼] iff𝑀 |= 𝛼 for a formula 𝛼
Sp( [𝑡]) = ∅ and ⟦[𝑡]⟧𝑀 = ⟦𝑡⟧𝑀 for a term 𝑡

We then have the following lemma. Fix a model𝑀 .

Lemma 2.2 (Eliminating Quantification using the Cloud Operator). 𝑀 |= ∃𝑦 : 𝑦 = 𝑓 (𝑥). 𝜑
if and only if 𝑀 |= (𝑓 (𝑥) = 𝑓 (𝑥)) ∧ 𝜑 ( [𝑓 (𝑥)]), and ⟦Sp(∃𝑦 : 𝑦 = 𝑓 (𝑥). 𝜑)⟧𝑀 = ⟦Sp((𝑓 (𝑥) =
𝑓 (𝑥)) ∧ 𝜑 ( [𝑓 (𝑥)]))⟧𝑀 □

2For readers familiar with separation logic, this formula is similar to the SL formula ∃𝑦. (𝑥 next↦→ 𝑦) ∗ List (𝑦)
3The example shows that substitution is not a semantics-preserving operation in FL. Indeed, a substitution is only valid if
the replacement expression has the same truth value and the same support as the original substituted sub-expression.

8



FO-Complete Program Verification for Frame Logic

We skip the proof of this lemma as it essentially follows from the definition of the support and
cloud operators.
In the sequel, we present verification condition generation and automated validity checking for
programs annotated with quantifier-free frame logic specifications obtained according to Lemma 2.2.
The user writes specifications in Frame Logic with guarded quantification (as in Figure 1), and we
rewrite it to quantifier-free formulas involving the cloud operator before applying the procedures
described in the following sections.

3 GENERATING VERIFICATION CONDITIONS IN FRAME LOGIC
In this section, we present the technical contribution of the paper, a verification condition generation
technique for quantifier-free frame logic specifications.
Let us fix some notation for this section. Let us assume we are dealing with the verification of

a program where locations have a fixed set of pointer and data fields F𝑚 , and we let 𝑓 , 𝑓 ′, 𝑓1, etc.
range over 𝐹 . Let us fix a set of recursive definitions for function symbols in a finite set I. Let
𝐼 , 𝐼 ′, 𝐼1, etc. range over I. Let us denote by Def the recursive definitions for each 𝐼 ∈ I, and let 𝐼 ’s
definition be 𝐼 ( ®𝑥) =lfp 𝜌𝐼 ( ®𝑥). Recursive definitions can be mutually defined.
An annotated program is a triple {Pre} 𝑃 {Post}, where 𝑃 is a program and Pre, Post are FL

formulas over the variables, pointers, data fields, recursive functions and allocated set of 𝑃 . Let us
also fix a set of methods𝐺 , which are called by 𝑃 . We assume every 𝑔 ∈ 𝐺 has its own precondition
Pre𝑔 and postcondition Post𝑔.

3.1 Hoare triples over Basic Blocks
Let us fix a Hoare triple for a program: {Pre} 𝑃 {Post} to be verified. We generate a set of Hoare
triples over basic blocks to capture the above Hoare triple. These triples not only capture verification
of the postcondition when 𝑃 terminates along different control flows in 𝑃 but also ensure that all
dereferences are safe.

We now define basic blocks corresponding to a program 𝑃 , 𝐵𝐵(𝑃).
• 𝐵𝐵(𝑐) = {𝑐} for any atomic command 𝑐
• 𝐵𝐵(if 𝜂 then 𝑃1 else 𝑃2) = {𝑎𝑠𝑠𝑢𝑚𝑒 (𝜂); 𝑃 ′1 | 𝑃 ′1 ∈ 𝐵𝐵(𝑃1)} ∪ {𝑎𝑠𝑠𝑢𝑚𝑒 (¬𝜂); 𝑃 ′2 | 𝑃 ′2 ∈ 𝐵𝐵(𝑃2)}
• 𝐵𝐵(𝑃1; 𝑃2) = {𝑃 ′1; 𝑃 ′2 | 𝑃 ′1 ∈ 𝐵𝐵(𝑃1), 𝑃 ′2 ∈ 𝐵𝐵(𝑃2)}

𝐵𝐵(𝑃) gives the set of basic blocks of 𝑃 , splitting paths on conditionals and including the condition
in conditionals using assume-statements. Each basic block is assumed to be in “SSA form” (every
variable is assigned at most once). This is not a restriction as every basic block in our language can
be put in this form.

The set of Hoare triples associated with basic blocks are:
• For each 𝑠 ∈ 𝐵𝐵(𝑃), {Pre} 𝑠 {Post}
• For every 𝑠1, 𝑠2, where 𝑠1;𝑥 := 𝑦.𝑓 ; 𝑠2 or 𝑠1;𝑦.𝑓 := 𝑥 ; 𝑠2 or 𝑠1; free(𝑦); 𝑠2 is in 𝐵𝐵(𝑃),

{Pre} 𝑠1 {𝑅𝑃 : [𝑦 ∈ 𝐴]}

• For every 𝑠1, 𝑠2 such that 𝑠1;𝑏 := 𝑔(𝑎); 𝑠2 ∈ 𝐵𝐵(𝑃),

{Pre} 𝑠1 {𝑅𝑃 : Pre𝑔 [𝑝 ← 𝑎]}

The first item above includes the verification of the postcondition of the program along every
basic block. The second set of Hoare triples captures safety of dereferences and ensures freed
locations are currently allocated. For each statement that dereferences a location variable or frees a
location, we add a Hoare triple for the prefix of the basic block till that statement and check using
relaxed postcondition that the variable is in the current allocated set. Finally, for each statement

9



Trovato et al.

that calls a method 𝑔, we introduce a prefix of the basic block till the call and check, again using a
relaxed postcondition, that the precondition of the called method holds. The relaxed postcondition
above ensures that the heaplet which is the support of the precondition of 𝑔, 𝑃𝑟𝑒𝑔 (which 𝑔 will
remain within) is a subset of the currently allocated set.

3.2 Verification Condition Generation
We present the core technical contribution in this section, a verification condition generation
mechanism for basic blocks. We generate verification conditions in frame logic with only universal
quantification over locations (for satisfiability) and with functions mapping from the foreground
sort to the foreground or background sorts (integers, sets of locations, etc.).

Intuitively, we will be constructing, for each Hoare triple {Pre} 𝑠 {Post} a verification of the form
((Pre ∧𝑇 ) ⇒ Post) ∧ 𝑆𝐶 where 𝑇 captures the semantics of transformation the basic block 𝑠 has
on the state and heap, and 𝑆𝐶 is a support condition that demands that the support of {𝑃𝑜𝑠𝑡} is
the support of Pre modulo allocations and freeing of locations that happen in 𝑠 (including calls to
other functions). In the case of Hoare triples with relaxed postconditions {Pre} 𝑠 {𝑅𝑃 : Post}, the
verification condition is similar, except that the support condition will demand that the support of
the postcondition is a subset of the support of the precondition, modulo allocations and freeing of
locations.

Consider a Hoare triple {𝛼} 𝑠 {𝛽} where 𝑠 is a basic block and where 𝛼, 𝛽 are annotations in frame
logic. We use the notion of a local configuration to build the verification condition. We describe
a transformation of local configurations across statements of a basic block 𝑏𝑏, processing one
statement of 𝑏𝑏 at a time, left to right. A local configuration consists of a 5-tuple (𝑇,𝐴,𝐻, Fr, RD).
After processing a prefix 𝑠′ of a basic block 𝑠 ,𝑇 corresponds to the formula describing the state after
the transformation 𝑠′ has had on states satisfying the precondition. The component 𝐴 represents
the set of allocated locations after the prefix, 𝐻 represents the heap after executing the prefix,
and Fr stands for a set of frame rules gathered during mutations of the heap by the prefix. Finally,
RD represents a set of new recursive definitions gathered to represent the recursive definitions I
evaluated on intermediate heaps during the execution of the prefix 𝑠′.
In the beginning, 𝑇 is set to Pre and 𝐴 is set to the support of the precondition 𝛼 of the Hoare

triple, i.e., Sp(𝛼), 𝐻 is initially simply a set of uninterpreted functions denoting the initial heap,
and Fr is the empty set. The set RD is initialized to D, the recursive definitions of I on the initial
heap. Formally:

Definition 3.1. A logical configuration is a tuple (𝑇,𝐴,𝐻, Fr, RD) where:
• 𝑇 is a quantifier-free logical formula describing the program transformation. 𝑇 is expressed
over program variables and recursive functions defined in RD
• 𝐴 is a term whose type is a set of locations, and denotes the current allocated set of locations.
• 𝐻 is a map that captures the current heap; it associates with each pointer 𝑓 ∈ 𝐹 a map
𝐻 (𝑓 ) : 𝐿𝑜𝑐 −→ 𝜎 ′, where 𝜎 ′ is the foreground sort of Locations or a background sort. 𝐻 (𝑓 )
is expressed as 𝜆𝑢.𝑡 (𝑢), where 𝑡 is a term over 𝑢 and the program variables.
• Fr is a set of universally quantified FO formulae that denotes a set of frame rules gathered
for each mutation of the heap.
• RD is a set of recursive definitions of a set of function symbols that capture properties/data
structures of intermediate heaps. □

The heap map 𝐻 associates with each pointer 𝑓 ∈ 𝐹 , a map 𝐻 (𝑓 ), that maps locations to the
appropriate sort (either location sort or a background sort). Note that these hence satisfy the
one-way condition we want for FO-completeness. The map 𝐻 (𝑓 ) is itself expressed in logic using
quantifier-free term involving other function symbols, such as the functions that characterize the

10



FO-Complete Program Verification for Frame Logic

initial heaplet. For example, 𝐻 (𝑓 ) may be the formula 𝜆𝑢.𝑖𝑡𝑒 (𝑢 = 𝑧, 𝑔1 (𝑧), 𝑔2 (𝑢)), where 𝑔1, 𝑔2 are
function symbols and 𝑧 is a program variable. In general, we will expand the signature with new
function symbols as we process a basic block.
We start with a set of recursive definitions for function symbols in I. As we construct the

verification condition, we adapt these definitions of functions in I to ones that refer to them
interpreted on new heaps.
In particular, for any 𝐻 and 𝐼 ∈ I, let us introduce a new function symbol 𝐼𝐻 , and let us add a

recursive definition for 𝐼𝐻 . This recursive definition 𝐼 [𝐻 ] is the definition for 𝐼 where every pointer
and data field 𝑓 ∈ F𝑚 mentioned in the recursive definition is replaced by 𝐻 (𝑓 ). In other words, for
each recursively defined function 𝐼 ∈ I, where 𝐼 is defined as 𝐼 (𝑥) =lfp 𝜌 (𝑥), we give a definition
𝐼 [𝐻 ] : 𝐼𝐻 (𝑥) =lfp 𝜌 [𝐻 (𝑓 )/𝑓 ] (𝑥), where 𝜌 [𝐻 (𝑓 )/𝑓 ] is 𝜌 where every occurrence of 𝑓 is replaced
with the term 𝐻 (𝑓 ), for each 𝑓 ∈ F𝑚 .

For example, consider the example of𝐻 mentioned above, and consider the definition lseg(𝑥,𝑦) =lfp
(𝑥 = 𝑦)∨lseg(𝑓 (𝑥), 𝑦). Then lseg[𝐻 ] is the definition lseg𝐻 =lfp (𝑥 = 𝑦)∨lseg(ite(𝑥 = 𝑧, 𝑔1 (𝑧), 𝑔2 (𝑥)), 𝑦).
The generation of verification conditions are presented in Figure 4. However, before diving into

explaining the rules, let’s discuss the frame rule (formally also described in Figure 4) that is used in
the rules.

Frame conditions: For any recursively defined function symbol 𝐼 ( ®𝑦) ∈ I, two heap maps 𝐻 , 𝐻 ′,
and a set of locations 𝑋 , we define the frame rule to be

fr(𝐼 , 𝑋, 𝐻, 𝐻 ′) : ∀®𝑦 ∈ 𝐿𝑜𝑐, (𝑋 ∩ 𝑆𝑝 (𝐼𝐻 ( ®𝑦)) = ∅) =⇒ (𝐼𝐻 ′ ( ®𝑦) = 𝐼𝐻 ( ®𝑦))

The above formula is meant to be used when a heap 𝐻 is transformed to a heap 𝐻 ′ where
mutations happen only on the locations in 𝑋 . It says that if the support of the recursive definition
on ®𝑦 (evaluated in 𝐻 ) does not intersect 𝑋 , its value in 𝐻 ′ is the same as that in 𝐻 . Note that this
formula has only universal quantification over the foreground sort of locations, and hence its
translation to FORD will be in the 𝐿oneway fragment.

We use fr(𝑋,𝐻,𝐻 ′) to denote the conjunction of fr(𝐼 , 𝑋, 𝐻, 𝐻 ′), for each 𝐼 ∈ I, which states the
frame condition for each recursively defined function in I.

VC Generator:

Definition 3.2 (VC for a basic block). For Hoare triples of basic blocks {𝛼} 𝑠 {𝛽} and for basic
blocks with relaxed post, the associated verification conditions are defined as:

VC ({𝛼} 𝑠 {𝛽}) =
((∧

Fr ∧𝑇
)
⇒ 𝛽

)
∧ Sp(𝛽) = 𝐴

VC ({𝛼} 𝑠 {𝑅𝑃 : 𝛽}) =
((∧

Fr ∧𝑇
)
⇒ 𝛽

)
∧ Sp(𝛽) ⊆ 𝐴

where
(𝑇,𝐴,𝐻, Fr, RD) = VC ((𝑇0, 𝐴0, 𝐻0, Fr0, RD0), 𝑠)

where 𝑇0 = 𝛼 , 𝐴0 = Sp(𝛼), 𝐻0 (𝑓 ) = 𝜆𝑢.𝑓 (𝑢) (for each 𝑓 ∈ 𝐹 ), Fr0 = ∅, RD0 = RD, and VC is the
transformer defined formally in Figure 4. □

We now give the intuition behind the transformer 𝑉𝐶 .
For an assignment x := y (Assn), we just add the condition 𝑥 = 𝑦 as a conjunct to our trans-

formation formula. Recall that we have assumed that the basic block is in SSA form, and this is
the sole assignment to the variable 𝑥 , and hence this conjunct captures the program configuration
constraining 𝑥 and 𝑦 to be equal. The scalar assignment rule (ScalarAssn) for assigning variables
of background sorts is similar.

11



Trovato et al.

Assn: VC((𝑇,𝐴,𝐻, Fr, RD), x B y) = (𝑇 ′, 𝐴, 𝐻, Fr, RD), where 𝑇 ′ = 𝑇 ∧ (𝑥 = 𝑦)
ScalarAssn: VC((𝑇,𝐴,𝑀, Fr, RD), v B be) = (𝑇 ′, 𝐴,𝑀, Fr, RD), where 𝑇 ′ = 𝑇 ∧ (𝑣 = 𝑏𝑒)
Deref: VC((𝑇,𝐴,𝐻, Fr, RD), x B y.f) = (𝑇 ′, 𝐴, 𝐻, Fr, RD), where 𝑇 ′ = 𝑇 ∧ (𝑥 = 𝐻 (𝑓 ) (𝑦))
Mutation: VC((𝑇,𝐴,𝐻, Fr, RD), y.f B x) = (𝑇,𝐴,𝐻 ′, Fr′, RD′), where

• 𝐻 ′ (𝑓 ) = 𝜆 arg. 𝑖𝑡𝑒 (arg = 𝑦, 𝑥, 𝐻 (𝑓 ) (𝑎𝑟𝑔)); 𝐻 ′ (𝑓 ′) = 𝐻 (𝑓 ′), for every 𝑓 ′ ∈ F𝑚, 𝑓 ′ ≠ 𝑓

• Fr′ = Fr ∪ {fr({𝑦}, 𝐻, 𝐻 ′)}
• RD′ = RD ∪ {𝐼 [𝐻 ′] | 𝐼 ∈ I}

Alloc: VC((𝑇,𝐴,𝐻, Fr, RD′), alloc(x)) = (𝑇 ′, 𝐴′, 𝐻 ′, Fr, RD) where
• 𝑇 ′ = 𝑇 ∧ (𝑥 ∉ 𝐴)
• 𝐴′ = 𝐴 ∪ {𝑥}
• 𝐻 ′ (𝑓 ) = 𝜆arg. ite(arg = 𝑥, default𝑓 , 𝐻 (𝑓 ) (arg)), for every 𝑓 ∈ F𝑚 with domain 𝐴′

• RD′ = RD ∪ {𝐼 [𝐻 ′] | 𝐼 ∈ I}
Free: VC((𝑇,𝐴,𝐻, Fr, RD′), free(x)) = (𝑇,𝐴′, 𝐻, Fr, RD) where

• 𝐴′ = 𝐴 \ {𝑥}
• 𝐻 ′ = 𝐻 but with domain 𝐴′

• RD′ = RD ∪ {𝐼 [𝐻 ′] | 𝐼 ∈ I}
Call: VC((𝑇,𝐴,𝐻, Fr, RD), 𝑏 B 𝑔(𝑎)) = (𝑇 ′, 𝐴′, 𝐻 ′, Fr′, RD′),

where 𝑔 has a method with a definition with input parameters 𝑥 and output 𝑦, with precon-
dition 𝛼 (𝑥) and postcondition 𝛽 (𝑥,𝑦).
Let 𝛼𝐻 denote 𝛼 where each 𝑓 ∈ F𝑚 is replaced by 𝐻 (𝑓 ) and each 𝐼 ∈ I by 𝐼𝐻 .
Similarly, let 𝛽𝐻 ′ denote 𝛽 where each 𝑓 ∈ F𝑚 is replaced by 𝐻 ′ (𝑓 ) and each 𝐼 ∈ I by 𝐼𝐻 ′ .
For every 𝑓 ∈ F𝑚 , we introduce a fresh uninterpreted function symbol 𝑓 ′. We set
• 𝐻 ′ (𝑓 ) = 𝜆arg. 𝑖𝑡𝑒 (arg ∉ 𝑆𝑝 (𝛼 [𝑥 ← 𝑎]), 𝐻 (𝑓 ) (arg), 𝑓 ′ (arg)) with domain 𝐴′

• 𝑇 ′ = 𝑇 ∧ 𝛽𝐻 ′ [𝑥 ← 𝑎,𝑦 ← 𝑏]
• 𝐴′ = (𝐴 \ 𝑆𝑝 (𝛼𝐻 [𝑥 ← 𝑎])) ∪ 𝑆𝑝 (𝛽𝐻 ′ [𝑥 ← 𝑎,𝑦 ← 𝑏])
• Fr′ = Fr ∪ { fr(𝑆𝑝 (𝛼𝐻 [𝑥 ← 𝑎]), 𝐻, 𝐻 ′) }
• RD′ = RD ∪ {𝐼 [𝐻 ′] | 𝐼 ∈ I}

Assume: VC((𝑇,𝐴,𝐻, Fr, RD), 𝑎𝑠𝑠𝑢𝑚𝑒 (𝛼)) = (𝑇 ∧ 𝛼,𝐴, 𝐻, Fr, RD)
SeqComp: VC((𝑇,𝐴,𝑀, Fr, RD), 𝑃 ;𝑄) = VC( VC((𝑇,𝐴,𝑀, Fr, RD), 𝑃), 𝑄 )
Frame Conditions: In the above rules, the frame formula is defined as:

fr(𝑋,𝐻,𝐻 ′) =
∧
𝐼 ∈I

fr(𝐼 , 𝑋, 𝐻, 𝐻 ′)

Fig. 4. Verification Condition Generation: Predicate transformers for basic blocks

For a dereference x := y.f (Deref), the transformation looks up the current pointer 𝑓 , using
the function 𝐻 (𝑓 ), and adds the conjunct that equates 𝑥 to 𝐻 (𝑓 ) (𝑦). Note that 𝐻 (𝑓 ) (𝑦) is the
formula 𝐻 (𝑓 ) with 𝑦 substituted as its parameter, and hence results in a quantifier-free term of the
appropriate type. The Assn and Deref rules do not change components other than the first as the
heap is not modified.

The generation of VCs for assume statements (Assume) and sequential composition (SeqComp)
are as expected.

For a mutation y.f := x, the transformation component doesn’t change, but the heap is updated
to reflect the mutation, where 𝐻 ′ (𝑓 ) (𝑦) = 𝑥 and is 𝐻 (𝑓 ) on other locations. We also introduce the
recursive definitions for I adjusted for the current heap 𝐻 ′ (adding them to RD′). And introduce
frame rules fr({𝑦}, 𝐻, 𝐻 ′) that set these new recursive definitions on any tuple to the value of old
ones provided that 𝑦 does not belong to the support of these definitions on the tuple.

12



FO-Complete Program Verification for Frame Logic

The transformation for function calls is more complex. First, we introduce an elegant way to take
care of the heap transformation (as far as we know, this is novel). For each pointer and data field
𝑓 ∈ F𝑚 , we introduce a fresh function symbol 𝑓 ′. The map 𝐻 ′ (𝑓 ) is now an 𝑖𝑡𝑒 (if-then-else) term,
where 𝐻 ′ (𝑓 ) (𝑢) evaluates to 𝐻 (𝑓 ) (𝑢), which is the old value of the pointer 𝑓 , provided 𝑢 does not
belong to the support of the precondition of the called function 𝑔. Otherwise, 𝐻 (𝑓 ) (𝑢) evaluates
to 𝑓 ′ (𝑢), which is an arbitrary value since 𝑓 ′ is uninterpreted. The transformation component
imbibes the postcondition guaranteed by the call to 𝑔, where the recursively defined functions 𝑅 in
the postcondition are modified to the functions 𝑅𝐻 ′ . Recursive definitions are adapted to the new
heap 𝐻 ′ after the call, and added to RD′. The new allocated set is derived from the old allocated set
by removing the locations in the support of the precondition of 𝑔 and adding back the locations in
the support of the postcondition of 𝑔. This handles the locations 𝑔 may allocated or freed during its
execution. Finally, we add frame condition formulae fr(𝑆𝑝 (𝛼 [𝑥 ← 𝑎]), 𝑀,𝑀 ′) that says that for any
recursive definition on a tuple that has an empty intersection with the support of the precondition
of 𝑔 remains unaffected when evaluated in the new heap.

The transformation for alloc statement (Alloc) adds an assumption that the allocated location
is not already present in the current allocated set 𝐴, adds it to the new allocated set, and updates
the heap map so that the new location’s pointers point to default values. The transformation for
free statements (Free) simply removes the location 𝑥 from the allocated set. Even though logical
expression for the heap function 𝐻 does not change with freeing of locations, its domain does.
Hence, when either allocation and free happens, we recompute the recursive definitions on the
new heap by updating the RD component. Note that we do not check whether freed locations are
indeed allocated as those are checked on other basic blocks explicitly, as described in the previous
subsection.

Our VC generation is sound and complete for the validity of Hoare Triples over basic blocks. Fix
a triple {𝛼} 𝑠 {𝛽} where 𝑠 is a basic block, and let VC be the map defined in Definition 3.2. Then:

Theorem 3.3 (Soundness of VC Generation for Basic Blocks). If VC ({𝛼} 𝑠 {𝛽}) is a valid
formula in Frame Logic then {𝛼} 𝑠 {𝛽} is valid in the sense of Definition 2.1. Similarly, if VC ({𝛼} 𝑠 {𝑅𝑃 :
𝛽}) is valid in Frame Logic then the triple {𝛼} 𝑠 {𝑅𝑃 : 𝛽}) is valid.

Theorem 3.4 (Completeness of VC Generation for Call-Free Basic Blocks). Let 𝑠 be a basic
block with no function calls. If {𝛼} 𝑠 {𝛽} is valid (Definition 2.1) then VC ({𝛼} 𝑠 {𝛽}) is valid. Similarly,
if {𝛼} 𝑠 {𝑅𝑃 : 𝛽}) is valid then VC ({𝛼} 𝑠 {𝑅𝑃 : 𝛽}) is valid.

We elide the proofs of these theorems as they are fairly straightforward from the definition of
the VC transformer and the operational semantics (Appendix A). The key argument in the proof
of completeness is that we model mutations precisely using updates to the heap map 𝐻 . Similarly,
allocation and deallocation are also modeled precisely using the symbolic allocated set 𝐴, which
corresponds to the true allocated set as defined by the operational semantics for call-free blocks.
Our completeness result is interesting in its own right, and showcases the power of our framework.
Contemporary works on VC generation for other logics such as Separation Logic are often not
complete [Berdine et al. 2005].

4 VALIDATING VERIFICATION CONDITIONS
In this section, we describe our validity procedure for checking the quantifier-free frame logic
verification conditions generated by the mechanism described in Section 3. Our technique has
two stages. In the first stage, we translate the quantifier-free FL formulas to quantifier-free FORD
formulas in a way that preserves validity. Recall that quantifier-free FL is simply an extension of
quantifier-free FORD with the support Sp(·) and cloud [·] operators. Intuitively, our translation

13



Trovato et al.

encodes the semantics of these operators in FORD itself. In the second stage, we reason with the
quantifier-free FORD formulas using natural proofs, a mechanism developed in prior work [Löding
et al. 2018; Pek et al. 2014; Qiu et al. 2013].

4.1 Stage 1: TranslatingQuantifier-Free FL toQuantifier-Free FORD
The first stage of our reasoning mechanism translates FL formulas to FORD formulas. The key idea
is to encode the semantics of the Sp and [·] operators within FORD itself. This process introduces
new recursive definitions corresponding to the support of existing recursive definitions.

Let us denote the translation by Π. This function takes as input a quantifier-free FL formula (or
term) containing the Sp and [·] operators and outputs an FORD formula (resp. term). We describe
the formal translation in Appendix B and provide intuition here. First, we obviously have that for
any FL formula 𝛼 that does not mention the support or cloud operators, Π(𝛼) = 𝛼 .

Next, to encode the Sp operator, it turns out that we can essentially mimic the equations describing
the semantics of Sp (Figure 2)! This is easy to see for formulas that do not contain recursively
defined symbols. For example, Π(Sp(𝑓 (𝑥) = 𝑦)) = {𝑥} for a mutable function 𝑓 ∈ F𝑚 , since
Π(𝑓 (𝑥) = 𝑦) = Π(𝑓 (𝑥)) ∪Π(𝑦) = {𝑥} ∪ ∅. Similarly, Π(Sp(𝛼 ∧ 𝛽)) = Π(Sp(𝛼)) ∪Π(Sp(𝛽)). In this
way, the Sp operator can be ‘compiled away’ by simply following the equations in Figure 2.

However, this does not work for recursively defined symbols. For example, recall the definition
of List (𝑥) written using the cloud operator (Equation 2). Using the recipe described above, the
support of List (𝑥) yields the following equation:
Sp(List (𝑥)) = Sp(ite(𝑥 = nil, ⊤, next (𝑥) = next (𝑥) ∧ List ( [next (𝑥)]) ∧ 𝑥 ∉ Sp(List ( [next (𝑥)]))))

= ite(𝑥 = nil, ∅, {𝑥} ∪ Sp(List ( [next (𝑥)]))
where we have expanded Sp on a cloud expression using the equation Sp( [𝛼]) = ∅.

We cannot compile away the Sp operator in this case. However, recall that the Sp operator is the
least interpretation satisfying the equations in Figure 2. We therefore introduce a new recursively
defined symbol SpList , defined by

SpList (𝑥) :=lfp ite(𝑥 = nil, ∅, {𝑥} ∪ SpList ( [next (𝑥)]))
and we then translate Sp(List (𝑥)) to SpList (𝑥). The latter is now an expression in FORD mentioning
the newly created recursive definition. In general, our translation creates a new recursively defined
symbol Sp𝐼 for every 𝐼 ∈ I corresponding to its support.

Finally, the encoding of the [·] operator is trivial. Since support expressions were eliminated in
the previous step, [𝛼] is identical to 𝛼 . Therefore, we simply ignore it in the translation. In particular,
the recursive sub-expression SpList ( [next (𝑥)]) in the above definition becomes SpList (next (𝑥)) in
the final translation to FORD.

4.2 Stage 2: Reasoning with FORD Formulas using Natural Proofs and SMT Solvers
The above translation of frame logic formulas results in FORD formulas that are quantifier-free (i.e.,
all free variables are implicitly universally quantified). Furthermore, they have the special form
that functions from the location sort map to either the location sort or a background sort, but no
function maps background sorts to the location sort. Hence they are part of a special fragment with
“one-way” definitions, Loneway fragment.

Natural proofs [Löding et al. 2018; Pek et al. 2014; Qiu et al. 2013] are a sound but incomplete
technique for proving validity of FORD formulae. It works by treating recursive definitions to have
fixpoint semantics (rather than least fixpoint) and hence obtaining a first-order formula. It then
instantiates the recursive definitions (similar to instantiating the quantifier for these definitions)
on terms of depth 𝑑 (for larger and larger 𝑑), and obtaining quantifier-free formulas. Validating

14



FO-Complete Program Verification for Frame Logic

SL-FL𝑏 Formulas 𝛼, 𝛽 ≔ 𝛾 | 𝑥 —𝑓→ 𝑦 | 𝛼 ∧ 𝛽 | 𝛼 ∗ 𝛽 | 𝛼 ∨ 𝛽 | ite(𝛾, 𝛼, 𝛽) | ∃𝑦.(𝑥 —𝑓→ 𝑦 : 𝛼)
H.I. atomic formulas 𝛾 ≔ true | false | 𝑥 = 𝑦 | 𝑥 ≠ 𝑦 | 𝑥 = nil | 𝑥 ≠ nil

Fig. 5. Base Separation Logic with FL inspired semantics (SL-FL𝑏 ); H.I. stands for “heap-independent”

these quantifier-free formulas is performed using an SMT solver. The foundations of this tech-
nique [Löding et al. 2018] show that the technique is in fact a complete technique for dealing with
first-order formulae (where recursive definitions have fixpoint semantics). Furthermore, in practice,
natural proofs have been shown useful for heap verification of other logics. We can hence validate
verification conditions using this automated technique.

5 A SEPARATION LOGIC WITH FRAME LOGIC INSPIRED SEMANTICS
We now define a separation logic with alternate semantics guided by frame logic semantics, in
particular defining determined supports for expressions that do not depend on the truthhood
of the formula. We also show a translation of this separation logic to frame logic, where tight
heaplets in the former translate to supports in the latter. This allows us to use the automated
verification techniques presented in the previous sections to reason with programs annotated with
this separation logic. Our logic is powerful, subsuming several known precise separation logics in
the literature [Berdine et al. 2005; Murali et al. 2023; O’Hearn et al. 2004]. In particular, our logic
allows negation and disjunction for spatial formulae which are not supported by prior precise
separation logics. Our logic, however, defines the semantics of disjunction differently in order to
ensure unique heaplets.

We define first a base separation logic (SL-FL𝑏 ) where the semantic differences are clear. We then
extend it to a more expressive logic (SL-FL) with inductive definitions and background sorts. Both
these logics can be translated to FL and hence verification of programs annotated with these logics
can be automated using the results of the previous section.

5.1 Base logic SL-FL𝑏
Let us fix a set of locations 𝐿𝑜𝑐 . Let 𝐿𝑜𝑐? denote 𝐿𝑜𝑐 ∪ {nil} where nil is a special symbol and
nil ∉ 𝐿𝑜𝑐 . Let us fix a countable set of variables Var, and let 𝑥,𝑦, 𝑥1, 𝑥2, 𝑥

′, 𝑦′ etc. range over Var.
These variables will be used to intuitively model program variables as well as quantified variables.
Let us fix a finite set of pointers Ptr, and let 𝑓 , 𝑓 ′, 𝑔, etc. range over Ptr.
The syntax for the logic SL-FL𝑏 is given in Figure 5. Here, 𝑥,𝑦 range over Var and 𝑓 ∈ Ptr. The

logic supports the separating conjunction ∗, both disjunction and conjunction, a special if-then-else
construct ite, and guarded existential quantification. Guards in ite formulas are restricted to be
atomic guards that have no dereferences (we will relax this later when extending the logic).

Semantics:. A store is a function 𝑠 : Var→ 𝐿𝑜𝑐?.
A heaplet ℎ is a set of functions {ℎ𝑓 | 𝑓 ∈ Ptr}, where each ℎ𝑓 : 𝐻 → 𝐿𝑜𝑐?, where 𝐻 ⊆ 𝐿𝑜𝑐 is the

common domain for all the functions ℎ𝑓 . Note that we do not assume heaplets are finite.4 Note that
the domain of all the functions ℎ𝑓 is common. We denote by ℎ(𝑓 ) the function ℎ𝑓 that ℎ defines,
and by 𝑑𝑜𝑚(ℎ) the set of locations 𝐻 . Also, for any 𝑆 ⊆ 𝑑𝑜𝑚(ℎ), let ℎ ⇂ 𝑆 denote the heaplet where
the domains of the pointer fields in ℎ are restricted to 𝑆 . A heaplet ℎ′ is a subheap/subheaplet of ℎ
if there is some 𝑆 ⊆ 𝑑𝑜𝑚(ℎ) such that ℎ′ = ℎ ⇂ 𝑆 . A global heap is a heaplet ℎ with 𝑑𝑜𝑚(ℎ) = 𝐿𝑜𝑐 .

4In our logics, heaps can be infinite, and so can heaplets, like the heaplet of an infinite list.

15



Trovato et al.

Supp(𝛾, 𝑠, ℎ) = ∅, for any heap-independent atomic formula 𝛾
Supp(𝑥 —𝑓→ 𝑦, 𝑠, ℎ) = {𝑠 (𝑥)} if 𝑠 (𝑥) is in 𝑑𝑜𝑚(ℎ) and ⊥ otherwise
Supp(𝛼 ⊕ 𝛽, 𝑠, ℎ) = Supp(𝛼, 𝑠, ℎ) ∪ Supp(𝛽, 𝑠, ℎ), where ⊕ ∈ {∧, ∗,∨}
Supp(ite(𝛾, 𝛼, 𝛽), 𝑠, ℎ) = Supp(𝛼, 𝑠, ℎ) if 𝑠 |= 𝛾 and Supp(𝛽, 𝑠, ℎ) otherwise
Supp(∃𝑦.(𝑥 —𝑓→ 𝑦 : 𝛼), 𝑠, ℎ) = ⊥if 𝑠 (𝑥) ∉ 𝑑𝑜𝑚(ℎ), 𝑎𝑛𝑑{𝑠 (𝑥)} ∪ Supp(𝛼, 𝑠 [𝑦 ↦→ ℎ(𝑓 ) (𝑠 (𝑥))], ℎ) otherwise.

Fig. 6. Definition of supports for separation logic formulae with respect to a heaplet

(𝑠, ℎ) |= 𝛾 iff ℎ = ∅ and 𝑠 |= 𝛾, for any heap-independent formula 𝛾
(𝑠, ℎ) |= 𝑥 —𝑓→ 𝑦 iff ℎ = {𝑠 (𝑥)} and ℎ(𝑓 ) (𝑠 (𝑥)) = 𝑦

(𝑠, ℎ) |= 𝛼 ∗ 𝛽 iff there exists ℎ1, ℎ2 subheaplets of ℎ, dom(ℎ1) ∪ dom(ℎ2) = dom(ℎ),
dom(ℎ1) ∩ dom(ℎ2) = ∅, (𝑠, ℎ1) |= 𝛼 and (𝑠, ℎ2) |= 𝛽

(𝑠, ℎ) |= 𝛼 ∧ 𝛽 iff (𝑠, ℎ) |= 𝛼 and (𝑠, ℎ) | = 𝛽

(𝑠, ℎ) |= 𝛼 ∨ 𝛽 iff there exists ℎ1, ℎ2 subheaplets of ℎ, dom(ℎ1) ∪ dom(ℎ2) = dom(ℎ),
dom(ℎ1) = Supp(𝛼, 𝑠, ℎ1), dom(ℎ2) = Supp(𝛽, 𝑠, ℎ2), 𝑎𝑛𝑑
((𝑠, ℎ1) |= 𝛼 or (𝑠, ℎ2) |= 𝛽)

(𝑠, ℎ) |= ite(𝛾, 𝛼, 𝛽) iff (𝑠 |= 𝛾 and (𝑠, ℎ) |= 𝛼) or (𝑠 ̸ |= 𝛾 and (𝑠, ℎ) |= 𝛽)
(𝑠, ℎ) |= (∃𝑦.𝑥 —𝑓→ 𝑦 : 𝛼) iff 𝑥 ∈ 𝑑𝑜𝑚(ℎ) and (𝑠 [𝑦 ↦→ ℎ(𝑓 ) (𝑥)], ℎ) |= 𝛼

Fig. 7. Semantics of base logic SL-FL𝑏

The Support Map:. Inspired by frame logic, we define a map, called the support map, that maps
any formula, store, and heaplet to the subdomain of the heaplet that corresponds to the set of
locations that the formula’s truthhood depends upon.

The map Supp is defined in Figure 6. Intuitively, Supp(𝛼, 𝑠, ℎ) either maps to a subset𝐻 ⊆ 𝑑𝑜𝑚(ℎ)
of locations that is sufficient to determine the truthhood of 𝛼 , or to ⊥ (when ℎ is not large enough).
This support corresponds roughly to the tightest heaplet that is typically used in separation
logic semantics. However, there are some crucial differences. First, note that the support of heap-
independent atomic formulas that depend only on the store (like true, 𝑥 = 𝑦, etc.) is the empty set
rather than any heaplet as in separation logic. While the supports of formulas 𝛼 ∧ 𝛽 , and 𝛼 ∗ 𝛽
are similar to tight heaplets defined in separation logic, the rule for disjunctions 𝛼 ∨ 𝛽 is starkly
different— it is the union of the supports for 𝛼 and 𝛽 , rather than either the support of 𝛼 or 𝛽 ,
depending on which holds, as in separation logic. This is crucial and makes supports unique, for
example when both disjuncts hold. Note that if-then-else expressions allow the support to depend
on the heap, namely how the condition 𝛾 evaluates on the heaplet, evaluating to either the support
of 𝛼 or the support of 𝛽 . This does not destroy heaplets from being uniquely determined.

The supports of formulas have several properties worth noting. Let 𝑆 be the support of a formula
with respect to a store and a heaplet ℎ, with 𝑆 ≠ ⊥. First, 𝑆 will be a subset of 𝑑𝑜𝑚(ℎ). Second,
consider a heaplet ℎ′ that agrees with ℎ on 𝑆 . Then the support of the formula with respect to ℎ′
will be 𝑆 as well. Third, the support of the formula with respect to ℎ restricted to 𝑆 will be 𝑆 itself.
Finally, there is at most one subheaplet ℎ′ of ℎ such that the support of the formula in ℎ′ is 𝑑𝑜𝑚(ℎ′)
itself. The following lemma formalizes this (see Appendix C for a proof gist).

Lemma 5.1. Let 𝑠 be a store and 𝛼 be a SL-FL𝑏 formula, ℎ be a heaplet, and let 𝑆 = Supp(𝛼, 𝑠, ℎ),
and 𝑆 ≠ ⊥.

(1) 𝑆 ⊆ 𝑑𝑜𝑚(ℎ).

16



FO-Complete Program Verification for Frame Logic

Π(𝛾) = 𝛾, for H.I. atomic formula 𝛾

Π(𝛼 ∗ 𝛽) = Π(𝛼) ∧ Π(𝛽) ∧ Sp(Π(𝛼)) ∩ Sp(Π(𝛽)) = ∅
Π(𝛼 ∧ 𝛽) = Π(𝛼) ∧ Π(𝛽) ∧ Sp(Π(𝛼)) = Sp(Π(𝛽))

Π(𝑥 —𝑓→ 𝑦) = 𝑓 (𝑥) = 𝑦

Π(𝛼 ∨ 𝛽) = Π(𝛼) ∨ Π(𝛽)
Π(ite(𝛾, 𝛼, 𝛽)) = ite(𝛾,Π(𝛼),Π(𝛽))

Π(∃𝑦.(𝑥 —𝑓→ 𝑦 : 𝛼)) = ∃𝑦 : 𝑦 = 𝑓 (𝑥).Π(𝛼)

Fig. 8. Translation from SL-FL𝑏 to Frame Logic

(2) Let ℎ′ be a heaplet such that 𝑆 ⊆ 𝑑𝑜𝑚(ℎ′) and ℎ′ ⇂ 𝑆 = ℎ ⇂ 𝑆 . Then Supp(𝛼, 𝑠, ℎ′) = 𝑆 .
(3) Supp(𝛼, 𝑠, ℎ ⇂ 𝑆) = 𝑆 .
(4) Letℎ1 andℎ2 be two sub-heaplets ofℎ and assume Supp(𝛼, 𝑠, ℎ1) = 𝑑𝑜𝑚(ℎ1) and Supp(𝛼, 𝑠, ℎ2) =

𝑑𝑜𝑚(ℎ2). Then 𝑑𝑜𝑚(ℎ1) = 𝑑𝑜𝑚(ℎ2). □

We are now ready to define the semantics of separation logic with respect to a store and a heaplet.
The semantics is defined in Figure 7.

The semantics for heap-independent formulas requires heaplets to be empty. The semantics of
𝑥 —𝑓→ 𝑦, 𝛼 ∗ 𝛽 , and 𝛼 ∧ 𝛽 are similar to standard separation logic semantics[Reynolds 2002]. The
semantics of disjunctive formulas 𝛼 ∨ 𝛽 is different and uses the Supp map. The formula 𝛼 ∨ 𝛽 holds
in a heaplet ℎ if the heaplet is the union of the supports of 𝛼 and 𝛽 , and 𝛼 holds with respect to its
support or 𝛽 holds with respect to its support. The semantics of if-then-else (ite) formulas ensures
that the heaplet matches the support required by 𝛼 or that of 𝛽 , depending on whether 𝛾 evaluates
to true or false, respectively.
The above semantics ensures a crucial property— consider any store 𝑠 , heap ℎ, and formula

𝛼 , then there is at most one sub-heaplet ℎ′ of ℎ that satisfies 𝛼 . This property does not hold for
standard separation logic semantics (see Appendix C for a proof gist).

Lemma 5.2. Let 𝑠 be a store and ℎ a heaplet.
(1) If (𝑠, ℎ) |= 𝛼 , then Supp(𝑠, ℎ, 𝛼) = dom(h).
(2) There is at most one subheaplet ℎ′ of ℎ such that (𝑠, ℎ′) |= 𝛼 . □

Translation to Frame Logic.
SL-FL𝑏 formulas, with their semantics using determined heaplets/supports, can be readily trans-

lated to frame logic. The translation is given in Figure 8, and is simple and natural. The translation
preserves both truthhood as well as heaplet semantics in the following sense (proof in Appendix C):

Lemma 5.3. Let 𝑔 be a global heap (a heaplet with domain 𝐿𝑜𝑐). Let 𝛼 be an SL-FL𝑏 formula. Then
• 𝑔 |= Π(𝛼) iff there exists a heaplet ℎ of 𝑔 such that (𝑠, ℎ) |= 𝛼 .
• If 𝑔 |= Π(𝛼), then Supp(𝛼, 𝑠, 𝑔) is equal to the value of Sp(Π(𝛼)) in 𝑔. □

The above allows us to build automatic verification procedures for programs annotated with
SL-FL𝑏 formulas. Annotations with contracts using separation logic formulas can be translated to
Frame Logic, with the understanding that they define implicit heaplets which is the support of the
corresponding Frame Logic formula. We can hence use our automated verification of programs
with FL annotations to verify programs with SL-FL𝑏 annotations.

5.2 Extending the base logic to background sorts and recursive definitions
We now extend the base logic to a more powerful logic that (a) allows recursive definitions of
predicates and functions, (b) incorporates background sorts (like arithmetic), pointer fields to such
sorts, and recursively defined functions that evaluate to the background sort and (c) generalizes
guards to be arbitrary separation logic formulae.

17



Trovato et al.

SL-FL Formulas 𝛼, 𝛼 ′, 𝛽 ≔ true | false | 𝑥 = 𝑦 | 𝑥 ≠ 𝑦 | 𝑥 = nil | 𝑥 ≠ nil | 𝑥 —𝑓→ 𝑦

| 𝑝 (𝑡) | 𝛼 ∧ 𝛽 | 𝛼 ∗ 𝛽 | 𝛼 ∨ 𝛽 | ite(𝛼 ′, 𝛼, 𝛽) | ∃𝑦.(𝑥 —𝑓→ 𝑦 : 𝛼) | 𝑅(𝑥)
Terms 𝑡, 𝑡 ′, 𝑡𝑖 ≔ 𝑥 | 𝑡 .𝑓 | 𝑔(𝑡) | ite(𝛼, 𝑡, 𝑡 ′) | 𝐹 (𝑡)

Recursive Definitions: 𝑅(𝑥) :=lfp 𝜌𝑅 (𝑥,R, F ), for each 𝑅 ∈ R
𝐹 (𝑥) :=lfp 𝜇𝐹 (𝑥,R, F ), for each 𝐹 ∈ F

Fig. 9. SL-FL: Syntax of full Separation Logic with Frame-Logic inspired semantics. The guards in ite expres-
sions should not mention recursively defined relations 𝑅 ∈ R

Let us fix background sorts, with accompanying functions and relations, G = {𝑔1, . . . , } and
P = {𝑝1, . . . , }. Let us also fix a set of symbols for functions and relations, F and R, respectively,
which we will use to define new recursively-defined functions and relations. Heaplets are extended
to include pointers that map locations to background sorts.
The syntax of SL-FL is given in Figure 9. Syntax for SL-FL formulas is similar to base logic, but

we add the ability for guards to be SL-FL formulas themselves (in ite expressions), and allow them
to evaluate predicates over terms of background sorts (𝑝 (𝑡)), and allow evaluation of recursively
defined predicates (𝑅(𝑡, 𝑥)). The syntax for terms allows dereferencing locations (resulting in either
locations or background sort), computing functions over background sorts (like + over integers),
if-then-else constructs, or recursively defined functions that return values of background sort (like
"Keys" of a location 𝑥 pointing to a list).

Recursively defined predicates (𝑅) and functions (𝐹 ) are defined with parameters of type location
only. This is a crucial restriction as we will, upon translation to Frame Logic and later to first-
order logic, treat these definitions as universally quantified equations, and it’s important for
FO-completeness using natural proofs that these quantifications are over the foreground sort of
locations only. Definitions of predicates (𝑅) and functions 𝐹 are mutually recursive and are arbitrary
SL-FL formulae 𝜌 and terms over background sorts 𝜇 that can mention R and F .
The semantics of the logic extend that of the base logic in the natural way, and we skip the

formal semantics here (see Appendix D for some details). We assume that each background sort is a
complete lattice (for flat sorts like arithmetic, we can introduce a bottom element and a top element
to obtain a complete lattice). The support maps are extended— they include the support of guards
in ite formulas, and for recursive definitions, they evaluate to the support of their definitions. The
semantics of both Supp and |= are taken together as equations and their semantics is defined as the
least fixpoint of these equations.

The separation logic that emerges is powerful and can state properties such as standard datastruc-
tures (lists, trees) and properties of them (keys, bst), etc. Furthermore, the logic can be translated
easily to FL (extending the Π translation above) for automated verification of programs annotated
using SL-FL (see Appendix D for some details).

6 IMPLEMENTATION AND EVALUATION
6.1 Implementation
We developed the Frame Logic Verifier (FLV) tool based on the mechanism described in Sections 3
and 4. The tool allows users to write heap-manipulating programs and annotations in quantifier-
free Frame Logic, using the support Sp(·) and cloud [·] operators. The tool also allows users to
write inductive lemmas which are then proven automatically using a form of induction using
pre-fixpoints [Löding et al. 2018].

18



FO-Complete Program Verification for Frame Logic

The FLV tool generates VCs that are translated to FORD. These quantifier-free FORD formulas
are then checked using an existing solver for natural proofs [Murali et al. 2022] which implements
the procedure described in Section 4.2, instantiating recursive definitions and reasoning with the
resulting quantifier-free formulas using Z3 [De Moura and Bjørner 2008].

The implementation is also optimized, introducing new recursive definitions and frame rules only
at certain key points: across function calls or at the end of a basic block. Note that the formulation
in Section 3 introduces them across every mutation, allocation, deallocation, and function call (as
described in Section 3). These optimized frame rules ‘batch’ the individual mutations, catering to
the footprint of the program between the key points. This optimization reduces the number of
instantiations produced by natural proofs significantly, leading to effective reasoning.

6.2 Benchmark Suite
We evaluate the expressiveness and performance of our contributions on a suite of data structure
programs which we annotate with Frame Logic specifications5. Our suite consists of 29 programs
involving operations on data structures such as singly and doubly linked lists, circular lists, binary
search trees, red-black trees, treaps, etc. We obtained this suite by distilling a core set of benchmarks
from prior work [Pek et al. 2014]. We considered the various crucial data structure manipulation
algorithms for each structure such as insertion, deletion, search, sorting, and traversals.

Table 1 summarizes our benchmark suite. We report in addition to lines of code some statistics on
the annotation burden, split across data structure definitions, specifications (pre/post conditions),
and inductive lemmas. We present the number of lines corresponding to recursive definitions and
inductive lemmas grouped by data structures as they only need to be written once and can be
reused across the various routines.

6.2.1 Specifications. We annotate our programs with complete functional specifications. We define
data structures and various measures over them using recursive definitions (see Appendix E for
examples) and write specifications using them. Table 2 contains examples of pre and post conditions
for several routines. We use the Sp operator to express disjointness of data structures; for example,
we specify in the precondition for the routine appending two singly linked lists 𝑥 and 𝑦 that they
are disjoint using the formula List (𝑥) ∧ List (𝑦) ∧ Sp(List (𝑥)) ∩ Sp(List (𝑦)) = ∅.

6.2.2 Lemmas. We use natural proofs to check the translated FORD formulas, which is complete
when recursive definitions are interpreted as fixpoints (rather than least fixpoints). Of course,
fixpoints are an incomplete abstraction, and therefore it is possible that valid theorems in FORD
are not provable using natural proofs. Work on natural proofs bridges this gap by asking the user
to provide inductive lemmas [Löding et al. 2018; Pek et al. 2014; Qiu et al. 2013].

We follow this paradigm in our work, writing lemmas when natural proofs was unable to prove
the programs correct. We summarize the lemmas we wrote in Table 3, which were predominantly of
three types. The first type of lemma involves supports of recursive definitions, stating for instance
that if 𝑥 pointed to a binary search tree (BST) as well as a red-black tree (RBT), then the supports
of the two definitions are equal. Lemmas of this type also express disjointness of supports.

The other two classes of lemmas relate the set of keys stored in a data structure to the minimum
and maximum elements of that set. For example, we state that a key 𝑘 that is greater than the
maximum of a BST cannot be a key stored in that BST. Note that min and max are recursively
defined functions. Lemmas of this kind were used to verify search routines, where the programs
may choose not to explore a certain subtree (e.g., BST Find) or even terminate search early and

5We provide the benchmarks in an anonymized repository: https://github.com/plresearcher/flvbenchmarks

19

https://github.com/plresearcher/flvbenchmarks


Trovato et al.

Data Structure Operations Program Rec. Defs. Lemmas Pre/Post Conds.

Singly Linked List

Insert Front 6

5 1

2
Insert Back 15 2
Delete 18 2
Find 16 3
Copy 14 4

Append 12 3
Reverse 14 5

Doubly Linked List

Insert Front 17

14 2

3
Insert Back 18 3
Insert Middle 19 10
Delete Middle 15 9

Sorted List
Insert 22

7 5
3

Delete 18 3
Find 22 3

Sorting
Insertion Sort 30

12 11
5

Merge Sort 67 12
Quicksort 63 45

Circular List
Insert Front 15

11 2
3

Delete Front 27 10
Find 32 6

BST

Insert 31

33 5

4
Delete 50 8
Find 23 3

Rotate Left 7 4
Tree to List 21 31 9 13

Tree In-order Traversal 14 28 6 6

Treap Delete 62 46 9 14
Find 23 7

RBT Insert 72 46 8 18

Table 1. List of Benchmarks and Lines of Code in the Specifications of Each Component. Each line of code
has approximately 80 characters.

Benchmark Pre Condition Post Condition
SLL Reverse List (𝑥 ) List (ret ) ∧ Keys (ret ) = Old (Keys (𝑥 ) )

Sorted Insert Sorted (𝑥 ) ∧ (𝑘 < +∞) Sorted (ret ) ∧ Keys (ret ) = Old (Keys (𝑥 ) ) ∪ {𝑘 }
∧ ite (Old (Min(𝑥 ) ) < 𝑘, Min(ret ) = Old (Min(𝑥 ) ), Min(ret ) = 𝑘 )

Sorted Concat
(part of

Quicksort)

Sorted (𝑥 )∧ Sorted (𝑦)
∧ Max (𝑥 ) ≤ Min(𝑦)
∧ 𝑆𝑝 (Sorted (𝑥 ) )
∩ 𝑆𝑝 (Sorted (𝑦) ) = ∅

Sorted (ret ) ∧ Keys (ret ) = Old (Keys (𝑥 ) ) ∪ Old (Keys (𝑦) )
∧ ite (𝑥 = nil,Min(ret ) = Old (Min(𝑦) ), Min(ret ) = Old (Min(𝑥 ) ) )
∧ ite (𝑦 = nil,Max (ret ) = Old (Max (𝑥 ) ), Max (ret ) = Old (Max (𝑦) ) )

Circular Find Circ (𝑥 ) Circ (𝑥 ) ∧ Keys (𝑥 ) = Old (Keys (𝑥 ) ) ∧(ret ⇐⇒ 𝑘 ∈ Keys (𝑥 ) )

BST Insert BST (𝑥 ) ∧ (−∞ < 𝑘 < +∞)
BST (ret ) ∧ Keys (ret ) = Old (Keys (𝑥 ) ) ∪ {𝑘 }

∧ ite (𝑘 < Old (Min(𝑥 ) ),Min(ret ) = 𝑘, Min(ret ) = Old (Min(𝑥 ) ) )
∧ ite (𝑘 > Old (Max (𝑥 ) ),Max (ret ) = 𝑘, Max (ret ) = Old (Max (𝑥 ) ) )

Treap Delete Treap (𝑥 )
Treap (ret ) ∧ Keys (ret ) = Old (Keys (𝑥 ) ) \ {𝑘 }

∧ Priorities (ret ) ⊆ Old (Priorities (𝑥 ) ) ∧ Old (MinKey (𝑥 ) ) ≤ MinKey (ret )
∧ MaxKey (ret ) ≤ Old (MaxKey (𝑥 ) ) ∧ MaxPrio(ret ) ≤ Old (MaxPrio(𝑥 ) )

Table 2. Example Pre and Post Conditions. 𝑥 and 𝑦 are of type Loc, and 𝑘 is of type Int. ret is a pointer to the
data structure returned by the routines.

declare that a key was not found. We believe that future work can automate these classes of lemmas
and remove the need for user help altogether.

6.3 Evaluation
We evaluate our tool on our suite of benchmarks. The experiments were performed on a laptop
with the following specifications: 11th Gen Intel Core i7-1165G7 @ 2.80GHz, 2701 Mhz, 4 Cores, 8
Logical Processors, and 12 GB RAM.

20



FO-Complete Program Verification for Frame Logic

Lemma Type Benchmark Lemmas

Support
BST Find BST (𝑥 ) =⇒ 𝑆𝑝 (Keys (𝑥 ) ) ⊆ 𝑆𝑝 (BST (𝑥 ) )
RBT Insert RBT (𝑥 ) =⇒ 𝑆𝑝 (BST (𝑥 ) ) = 𝑆𝑝 (RBT (𝑥 ) )
RBT Insert RBT (𝑥 ) =⇒ 𝑥 ≠ nil =⇒ 𝑥 ∉ 𝑆𝑝 (RBT ( [left (𝑥 ) ] ) )

Keys Sorted Find Sorted (𝑥 ) =⇒ 𝑘 < Min(𝑥 ) =⇒ 𝑘 ∉ Keys (𝑥 )
BST Find BST (𝑥 ) =⇒ Max (𝑥 ) < 𝑘 =⇒ 𝑘 ∉ Keys (𝑥 )

Min/Max
Tree to List BST (𝑥 ) =⇒ 𝑛 ≠ nil =⇒

ite (left (𝑥 ) = nil,Min(𝑥 ) = 𝑘𝑒𝑦 (𝑥 ),Min(𝑥 ) = Min(left (𝑥 ) ) )
Treap Delete Treap (𝑥 ) =⇒ 𝑥 ≠ nil =⇒ MaxPriority (𝑥 ) = prio(𝑥 )
Quicksort 𝑥 ≠ nil =⇒ Max (𝑥 ) ≤ Min(𝑦) =⇒ Min(𝑥 ) ≤ Min(𝑦)

Table 3. Example Lemmas

Benchmark Number Verif.
of VCs Time

SLL Insert Front 3 1s
SLL Insert Back 7 1s
SLL Delete 9 1s
SLL Find 5 1s
SLL Copy 6 1s
SLL Append 5 1s
SLL Reverse 5 1s
DLL Insert Front 8 1s
DLL Insert Back 9 8s
DLL Insert Mid 10 8s
DLL Delete Mid 11 4s
Sorted Insert 10 1s
Sorted Delete 9 2s
Sorted Find 6 1s

Benchmark Number Verif.
of VCs Time

Insertion Sort 13 9s
Merge Sort 26 12s
Quicksort 25 38s
CL Insert Front 6 29s
CL Delete Front 12 20s
CL Find 10 2s
BST Insert 13 1m20s
BST Delete 27 1m48s
BST Find 8 15s
BST Rotate Left 5 2s
BST to List 11 27s
In-Order Traversal 8 11s
Treap Delete 32 1m08s
Treap Find 8 13s
RBT Insert 39 8m30s

Table 4. Tool Performance (SLL = singly-linked list, DLL = doubly-linked list, CL = circular list, BST = Binary
Search Tree).

6.3.1 Verifying Programs. We present our evaluation in Table 4. Our tool verifies all benchmarks
effectively. For the more complex programs Treap Delete and RBT Insert, we executed two instantia-
tion strategies, one on depth 2 terms and the other on an extended footprint (see [Pek et al. 2014]),
in parallel, and report the time when a strategy first succeeds. We observe that verification times
increase as specifications get more complex, particularly involving reasoning with sets. However,
we manually analyzed such benchmarks and found that the reasoning patterns involving sets are
quite general and are repeated across the suite. We believe that future work on a paradigm that
reasons with sets using set axioms (as in tools like Dafny) can improve performance greatly.

6.3.2 Identifying Buggy Programs. We study the performance of our tool on identifying buggy
programs by ablating specifications for five programs. We removed essential conjuncts from
the precondition such as the disjointness of two lists (for the sorted list merge routine), or the
requirement for the root of a BST to not be nil (for deletion in a BST). These ablations were derived
from the kinds of incorrect specifications we encountered during the creation of the benchmark
suite. Among the invalid VCs generated, the tool is able to report them as unprovable within a
few seconds for half of all VCs, but times out in 20 minutes for the other half. We provide further
details regarding the ablations and the VCs corresponding to the timeouts in Appendix E.

21



Trovato et al.

6.3.3 Verification Experience. The benchmark suite was developed in its entirety by one of the
authors. We report on the insights from their experience in creating the benchmark suite, writing
specifications in Frame Logic, and verifying programs using the FLV tool. This author was not
familiar with Frame Logic or Natural Proofs before beginning this work and was not involved in
the development of the FLV tool. They were also not aware of the details of the VC generation
mechanism during the development of the suite. They were only familiar with First-Order Logic
and general principles of program verification and had some experience using Coq. We do not
claim that the experience reported here is objective or independent, and the reader must take these
comments with this caveat.

First, the author found the ability to talk explicitly about supports in Frame Logic quite intuitive.
In particular, the author found it easy to modify pre or postconditions with conjuncts involving
supports compared to their experience with thinking about annotations in separation logic. For
example, in their first attempt at encoding the merge function (from merge sort), the precondition
that they wrote did not specify that the supports of the two lists being merged had to be disjoint
and so the program was unable to verify, realizing the cause of this error the condition that the
lists be disjoint was simply added as an additional conjunct to the precondition. Similarly, in the
partitioning function for quicksort, adding to the post condition that the two resulting lists are
disjoint just required the addition of one extra conjunct.
These two examples also highlight the general approach that they found themself taking in

the development of the benchmark suite. They first translated the programs from the work on
Dryad [Pek et al. 2014] (a Separation Logic variant), and wrote initial specifications mirroring those
present in that work. The translation required some rewriting owing to differences in the logics,
such as the use of recursively defined functions to compute the minimum or maximum keys stored
in a data structure. They then ran the tool and manually investigated the basic blocks which did not
verify. This allowed them to identify statements that were causing specific postconditions to fail to
verify, and they would then modify the specifications appropriately. Similarly, they also identified
insufficient specifications and fixed them. This process crucially used Relaxed Postconditions (and
a variant of it with no checks on the support at all, called supportless postconditions) as it allowed
specifying weaker postconditions whose support may not be equal to the entire set of allocated
locations in the post state, and strengthening the postcondition gradually.

This process, and the automated verification, demonstrate the strengths of Frame Logic; allowing
the mental separation of dealing with support from other correctness conditions being encoded,
and the ability to use the tool to quickly iterate and modify conditions to understand why a piece
of code will not verify and then be able to quickly and easily update conditions and re-verify to see
if the issue was fixed.

7 RELATEDWORK
The work on Frame Logic [Murali et al. 2023, 2020] is the most relevant prior work, which we
have discussed at length in the paper. There are many other logics [Banerjee et al. 2008; Bobot
and Filliâtre 2012; Hobor and Villard 2013; Kassios 2006; Pek et al. 2014; Reynolds 2002; Smans
et al. 2009] for heaps that make different choices in terms of whether heaplets of formulae are
implicit, whether formulas have unique heaps, etc. The most popular among these is Separation
logic [Demri and Deters 2015; O’Hearn 2012; O’Hearn et al. 2001; Reynolds 2002] which has implicit
but non-unique heaplets for formulas. Dynamic Frames [Kassios 2006, 2011] and related approaches
like Region Logic [Banerjee and Naumann 2013; Banerjee et al. 2008, 2013] allow users to explicitly
specify heaplets and uses them to reason about the program’s modifications. The work on Implicit
Dynamic Frames [Leino and Müller 2009; Parkinson and Summers 2011; Smans et al. 2009, 2012]
combines the ideas of implicit heaplets in separation logic and explicitly accessible heaplets in

22



FO-Complete Program Verification for Frame Logic

dynamic frames, resulting in implementations such as Chalice [Parkinson and Summers 2011] and
Viper [Müller et al. 2016]. There is also work on translating VeriFast [Jacobs et al. 2011] predicates
into Implicit Dynamic Frames [Jost and Summers 2014].
There is rich prior work on reasoning with separation logic. A first category of prior works

develop fragments with decidable reasoning [Berdine et al. 2006, 2004, 2005; Cook et al. 2011;
Navarro Pérez and Rybalchenko 2011; Pagel 2020; Pérez and Rybalchenko 2013; Piskac et al. 2013].
There is also work on decidability of heap properties specifiable in EPR (Effectively Propositional
Reasoning) [Itzhaky et al. 2014a, 2013, 2014b]. A second category of works translate separation
logic to first-order logic and use reasoning mechanisms for FOL [Chin et al. 2007; Löding et al.
2018; Madhusudan et al. 2012; Pek et al. 2014; Piskac et al. 2013, 2014a,b; Qiu et al. 2013; Suter et al.
2010]. There are also techniques that reason with separation logic using cyclic proofs [Brotherston
et al. 2011; Ta et al. 2016].
The work in [Bobot and Filliâtre 2012] develops a logic similar to FL and uses Why3 [Filliâtre

and Paskevich 2013a,b] to reason with verification conditions.
We use in our work the reasoning technique of natural proofs [Löding et al. 2018; Madhusudan

et al. 2012; Pek et al. 2014; Qiu et al. 2013]. The technique of quantifier instantiation used by natural
proofs is similar to many other unfolding-based techniques in the literature [Jacobs et al. 2011;
Kaufmann and Moore 1997; Leino 2012; Nguyen and Chin 2008; Suter et al. 2010].

The work on FL formulates a fragment of separation logic called Precise Separation Logic which
has determined, unique heaplets and provides a translation of the fragment to FL. Other prior
literature has also studied fragments with determined heaplets [O’Hearn et al. 2004; Pek et al.
2014; Qiu et al. 2013] as it is easier to develop automated reasoning for them. We believe that the
techniques developed in this work can open up new pathways to automating separation logics.

8 CONCLUSIONS
Frame logic is based on extending first-order logic with a support operator whose semantics
follows a similar philosophy of tight heaplets developed in separation logic. While automation
for separation logic has been challenging, especially due to second-order operators such as the
magic wand, frame logic was proposed in previous work as a logic that is closed under weakest
preconditions without the need for such second-order operators.

This paper realizes the vision of bringing automated FO logic reasoning to frame logic, showing
that program verification reasoning against frame logic specifications can in fact be realized using
practical heuristics that use SMT solvers and that are furthermore FO-complete.

We also believe that frame logic and its automation can be used as a pathway for other logics to
be reasoned with effectively using translations. To this end, we have shown an alternate semantics
for a powerful separation logic that can be embedded into frame logic.
In order to reason with first-order logic with recursive definitions, recent work [Murali et al.

2022] has proposed inductive lemma synthesis algorithms that work in tandem with natural proofs.
Exploring how to incorporate lemma synthesis into our verification framework could alleviate the
current burden on the programmer to write these inductive lemmas (described for our benchmarks
in Section 6).

We believe that our alternate semantics for separation logic SL-FL is worthy of further study. In
particular, since we have shown that its reasoning can be automated using FO reasoning, a track in
an SL competition like SLComp [Sighireanu 2021] would be interesting to encourage competitive
tools development.

Finally, it would be interesting to see whether frame logic and its automated reasoning explored
in this paper can be adapted to reasoning with incorrectness logics [O’Hearn 2019], finding ways to
use first-order reasoning and SMT reasoning to find errors in programs.

23



Trovato et al.

REFERENCES
Alfred V. Aho and Jeffrey D. Ullman. 1979. Universality of Data Retrieval Languages. In Proceedings of the 6th ACM

SIGACT-SIGPLAN Symposium on Principles of Programming Languages (San Antonio, Texas) (POPL ’79). Association for
Computing Machinery, New York, NY, USA, 110–119. https://doi.org/10.1145/567752.567763

Anindya Banerjee and David A. Naumann. 2013. Local Reasoning for Global Invariants, Part II: Dynamic Boundaries. J.
ACM 60, 3, Article 19 (jun 2013), 73 pages. https://doi.org/10.1145/2485981

Anindya Banerjee, David A. Naumann, and Stan Rosenberg. 2008. Regional Logic for Local Reasoning about Global
Invariants. In ECOOP 2008 – Object-Oriented Programming, Jan Vitek (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
387–411.

Anindya Banerjee, David A. Naumann, and Stan Rosenberg. 2013. Local Reasoning for Global Invariants, Part I: Region
Logic. J. ACM 60, 3, Article 18 (June 2013), 56 pages. http://doi.acm.org/10.1145/2485982

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2006. Smallfoot: Modular Automatic Assertion Checking with
Separation Logic. In Proceedings of the 4th International Conference on Formal Methods for Components and Objects
(Amsterdam, The Netherlands) (FMCO’05). Springer-Verlag, Berlin, Heidelberg, 115–137. https://doi.org/10.1007/
11804192_6

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2004. A Decidable Fragment of Separation Logic. In Proceedings of
the 24th International Conference on Foundations of Software Technology and Theoretical Computer Science (Chennai, India)
(FSTTCS’04). Springer-Verlag, Berlin, Heidelberg, 97–109. https://doi.org/10.1007/978-3-540-30538-5_9

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2005. Symbolic Execution with Separation Logic. In Proceedings of
the Third Asian Conference on Programming Languages and Systems (Tsukuba, Japan) (APLAS’05). Springer-Verlag, Berlin,
Heidelberg, 52–68. https://doi.org/10.1007/11575467_5

François Bobot and Jean-Christophe Filliâtre. 2012. Separation Predicates: A Taste of Separation Logic in First-Order Logic.
In Formal Methods and Software Engineering, Toshiaki Aoki and Kenji Taguchi (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 167–181.

Rémi Brochenin, Stéphane Demri, and Etienne Lozes. 2008. On the Almighty Wand. In Computer Science Logic, Michael
Kaminski and Simone Martini (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 323–338.

James Brotherston, Dino Distefano, and Rasmus Lerchedahl Petersen. 2011. Automated Cyclic Entailment Proofs in
Separation Logic. In Proceedings of the 23rd International Conference on Automated Deduction (CADE’11). Springer-Verlag,
Berlin, Heidelberg, 131–146. http://dl.acm.org/citation.cfm?id=2032266.2032278

Ashok K. Chandra and David Harel. 1980. Structure and Complexity of Relational Queries. In Proceedings of the 21st
Annual Symposium on Foundations of Computer Science (SFCS ’80). IEEE Computer Society, USA, 333–347. https:
//doi.org/10.1109/SFCS.1980.41

Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. 2007. Automated Verification of Shape, Size and Bag
Properties. In Proceedings of the 12th IEEE International Conference on Engineering Complex Computer Systems (ICECCS
’07). IEEE Computer Society, USA, 307–320. https://doi.org/10.1109/ICECCS.2007.17

Byron Cook, Christoph Haase, Joël Ouaknine, Matthew Parkinson, and James Worrell. 2011. Tractable Reasoning in
a Fragment of Separation Logic. In Proceedings of the 22nd International Conference on Concurrency Theory (Aachen,
Germany) (CONCUR’11). Springer-Verlag, Berlin, Heidelberg, 235–249.

Leonardo DeMoura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the 14th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (Budapest, Hungary) (TACAS’08). Springer-Verlag,
Berlin, Heidelberg, 337–340.

Stéphane Demri and Morgan Deters. 2015. Separation logics and modalities: a survey. Journal of Applied Non-Classical
Logics 25 (2015), 50–99.

Jean-Christophe Filliâtre and Andrei Paskevich. 2013a. Why3: Where Programs Meet Provers. In Proceedings of the 22nd
European Conference on Programming Languages and Systems (Rome, Italy) (ESOP’13). Springer-Verlag, Berlin, Heidelberg,
125–128. https://doi.org/10.1007/978-3-642-37036-6_8

Jean-Christophe Filliâtre and Andrei Paskevich. 2013b. Why3: Where Programs Meet Provers. In Proceedings of the 22nd
European Conference on Programming Languages and Systems (Rome, Italy) (ESOP’13). Springer-Verlag, Berlin, Heidelberg,
125–128. https://doi.org/10.1007/978-3-642-37036-6_8

Aquinas Hobor and Jules Villard. 2013. The Ramifications of Sharing in Data Structures. In Proceedings of the 40th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Rome, Italy) (POPL ’13). Association for
Computing Machinery, New York, NY, USA, 523–536. https://doi.org/10.1145/2429069.2429131

Neil Immerman. 1982. Relational Queries Computable in Polynomial Time (Extended Abstract). In Proceedings of the
Fourteenth Annual ACM Symposium on Theory of Computing (San Francisco, California, USA) (STOC ’82). Association for
Computing Machinery, New York, NY, USA, 147–152. https://doi.org/10.1145/800070.802187

Shachar Itzhaky, Anindya Banerjee, Neil Immerman, Ori Lahav, Aleksandar Nanevski, and Mooly Sagiv. 2014a. Modular
Reasoning About Heap Paths via Effectively Propositional Formulas. In Proceedings of the 41st ACM SIGPLAN-SIGACT

24

https://doi.org/10.1145/567752.567763
https://doi.org/10.1145/2485981
http://doi.acm.org/10.1145/2485982
https://doi.org/10.1007/11804192_6
https://doi.org/10.1007/11804192_6
https://doi.org/10.1007/978-3-540-30538-5_9
https://doi.org/10.1007/11575467_5
http://dl.acm.org/citation.cfm?id=2032266.2032278
https://doi.org/10.1109/SFCS.1980.41
https://doi.org/10.1109/SFCS.1980.41
https://doi.org/10.1109/ICECCS.2007.17
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1145/2429069.2429131
https://doi.org/10.1145/800070.802187


FO-Complete Program Verification for Frame Logic

Symposium on Principles of Programming Languages (San Diego, California, USA) (POPL ’14). ACM, New York, NY, USA,
385–396. https://doi.org/10.1145/2535838.2535854

Shachar Itzhaky, Anindya Banerjee, Neil Immerman, Aleksandar Nanevski, and Mooly Sagiv. 2013. Effectively-Propositional
Reasoning About Reachability in Linked Data Structures. In Proceedings of the 25th International Conference on Computer
Aided Verification (Saint Petersburg, Russia) (CAV’13). Springer-Verlag, Berlin, Heidelberg, 756–772. https://doi.org/10.
1007/978-3-642-39799-8_53

Shachar Itzhaky, Nikolaj Bjørner, Thomas Reps, Mooly Sagiv, and Aditya Thakur. 2014b. Property-Directed Shape Analysis.
In Proceedings of the 16th International Conference on Computer Aided Verification (CAV’14). Springer-Verlag, Berlin,
Heidelberg, 35–51. https://doi.org/10.1007/978-3-319-08867-9_3

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens. 2011. VeriFast: A
Powerful, Sound, Predictable, Fast Verifier for C and Java. In Proceedings of the Third International Conference on NASA
Formal Methods (Pasadena, CA) (NFM’11). Springer-Verlag, Berlin, Heidelberg, 41–55.

Daniel Jost and Alexander J. Summers. 2014. An Automatic Encoding from VeriFast Predicates into Implicit Dynamic
Frames. In Verified Software: Theories, Tools, Experiments, Ernie Cohen and Andrey Rybalchenko (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 202–221.

Ioannis T. Kassios. 2006. Dynamic Frames: Support for Framing, Dependencies and Sharing Without Restrictions. In FM
2006: Formal Methods, Jayadev Misra, Tobias Nipkow, and Emil Sekerinski (Eds.). Springer-Verlag, Berlin, Heidelberg,
268–283.

I. T. Kassios. 2011. The Dynamic Frames Theory. Form. Asp. Comput. 23, 3 (May 2011), 267–288. https://doi.org/10.1007/
s00165-010-0152-5

Matt Kaufmann and J. S. Moore. 1997. An Industrial Strength Theorem Prover for a Logic Based on Common Lisp. IEEE
Trans. Softw. Eng. 23, 4 (April 1997), 203–213. https://doi.org/10.1109/32.588534

K. Rustan M. Leino. 2012. Automating Induction with an SMT Solver. In Proceedings of the 13th International Conference
on Verification, Model Checking, and Abstract Interpretation (Philadelphia, PA) (VMCAI’12). Springer-Verlag, Berlin,
Heidelberg, 315–331. https://doi.org/10.1007/978-3-642-27940-9_21

K. Rustan M. Leino and Peter Müller. 2009. A Basis for Verifying Multi-threaded Programs. In Programming Languages and
Systems, Giuseppe Castagna (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 378–393. https://doi.org/10.1007/978-
3-642-00590-9_27

Leonid Libkin. 2004. Elements of Finite Model Theory. Springer. https://doi.org/10.1007/978-3-662-07003-1
Christof Löding, P. Madhusudan, and Lucas Peña. 2018. Foundations for natural proofs and quantifier instantiation. PACMPL

2, POPL (2018), 10:1–10:30. https://doi.org/10.1145/3158098
P. Madhusudan, Xiaokang Qiu, and Andrei Ştefănescu. 2012. Recursive Proofs for Inductive Tree Data-structures. In

Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Philadelphia,
PA, USA) (POPL ’12). ACM, New York, NY, USA, 123–136. https://doi.org/10.1145/2103656.2103673

Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016. Viper: A Verification Infrastructure for Permission-
Based Reasoning. In Proceedings of the 17th International Conference on Verification, Model Checking, and Abstract
Interpretation - Volume 9583 (St. Petersburg, FL, USA) (VMCAI 2016). Springer-Verlag, Berlin, Heidelberg, 41–62. https:
//doi.org/10.1007/978-3-662-49122-5_2

Adithya Murali, Lucas Peña, Eion Blanchard, Christof Löding, and P. Madhusudan. 2022. Model-Guided Synthesis of
Inductive Lemmas for FOL with Least Fixpoints. Proc. ACM Program. Lang. 6, OOPSLA2, Article 191 (oct 2022), 30 pages.
https://doi.org/10.1145/3563354

Adithya Murali, Lucas Peña, Christof Löding, and P. Madhusudan. 2023. A First-Order Logic with Frames. ACM Trans.
Program. Lang. Syst. 45, 2, Article 7 (may 2023), 44 pages. https://doi.org/10.1145/3583057

Adithya Murali, Lucas Peña, Christof Löding, and P. Madhusudan. 2020. A First-Order Logic with Frames. In Programming
Languages and Systems, Peter Müller (Ed.). Springer International Publishing, Cham, 515–543.

Juan Antonio Navarro Pérez and Andrey Rybalchenko. 2011. Separation Logic + Superposition Calculus = Heap Theorem
Prover. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI
’11). ACM, New York, NY, USA, 556–566.

Greg Nelson and Derek C. Oppen. 1979. Simplification by Cooperating Decision Procedures. ACM Trans. Program. Lang.
Syst. 1, 2 (Oct 1979), 245–257. https://doi.org/10.1145/357073.357079

Huu Hai Nguyen and Wei-Ngan Chin. 2008. Enhancing Program Verification with Lemmas. In Proceedings of the 20th
International Conference on Computer Aided Verification (Princeton, NJ, USA) (CAV ’08). Springer-Verlag, Berlin, Heidelberg,
355–369. https://doi.org/10.1007/978-3-540-70545-1_34

Peter W. O’Hearn. 2012. A Primer on Separation Logic (and Automatic Program Verification and Analysis). In Software
Safety and Security - Tools for Analysis and Verification, Tobias Nipkow, Orna Grumberg, and Benedikt Hauptmann (Eds.).
NATO Science for Peace and Security Series - D: Information and Communication Security, Vol. 33. IOS Press, 286–318.
https://doi.org/10.3233/978-1-61499-028-4-286

25

https://doi.org/10.1145/2535838.2535854
https://doi.org/10.1007/978-3-642-39799-8_53
https://doi.org/10.1007/978-3-642-39799-8_53
https://doi.org/10.1007/978-3-319-08867-9_3
https://doi.org/10.1007/s00165-010-0152-5
https://doi.org/10.1007/s00165-010-0152-5
https://doi.org/10.1109/32.588534
https://doi.org/10.1007/978-3-642-27940-9_21
https://doi.org/10.1007/978-3-642-00590-9_27
https://doi.org/10.1007/978-3-642-00590-9_27
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1145/3158098
https://doi.org/10.1145/2103656.2103673
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1145/3563354
https://doi.org/10.1145/3583057
https://doi.org/10.1145/357073.357079
https://doi.org/10.1007/978-3-540-70545-1_34
https://doi.org/10.3233/978-1-61499-028-4-286


Trovato et al.

Peter W. O’Hearn. 2019. Incorrectness Logic. Proc. ACM Program. Lang. 4, POPL, Article 10 (dec 2019), 32 pages. https:
//doi.org/10.1145/3371078

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning About Programs That Alter Data Structures.
In Proceedings of the 15th International Workshop on Computer Science Logic (CSL ’01). Springer-Verlag, London, UK, UK,
1–19. http://dl.acm.org/citation.cfm?id=647851.737404

Peter W. O’Hearn, Hongseok Yang, and John C. Reynolds. 2004. Separation and Information Hiding. In Proceedings of the
31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Venice, Italy) (POPL ’04). ACM, New
York, NY, USA, 268–280. https://doi.org/10.1145/964001.964024

Jens Pagel. 2020. Decision procedures for separation logic: beyond symbolic heaps. Ph. D. Dissertation. Wien.
Matthew J. Parkinson and Alexander J. Summers. 2011. The Relationship between Separation Logic and Implicit Dynamic

Frames. In Programming Languages and Systems, Gilles Barthe (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg,
439–458.

Edgar Pek, Xiaokang Qiu, and P. Madhusudan. 2014. Natural Proofs for Data Structure Manipulation in C Using Separation
Logic. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation
(Edinburgh, United Kingdom) (PLDI ’14). ACM, New York, NY, USA, 440–451. https://doi.org/10.1145/2594291.2594325

Juan Antonio Navarro Pérez and Andrey Rybalchenko. 2013. Separation Logic Modulo Theories. In Programming Languages
and Systems (APLAS). Springer International Publishing, Cham, 90–106.

Ruzica Piskac, Thomas Wies, and Damien Zufferey. 2013. Automating Separation Logic Using SMT. In Proceedings of the
25th International Conference on Computer Aided Verification (Saint Petersburg, Russia) (CAV’13). Springer-Verlag, Berlin,
Heidelberg, 773–789. https://doi.org/10.1007/978-3-642-39799-8_54

Ruzica Piskac, Thomas Wies, and Damien Zufferey. 2014a. Automating Separation Logic with Trees and Data. In Proceedings
of the 16th International Conference on Computer Aided Verification (CAV’14). Springer-Verlag, Berlin, Heidelberg, 711–728.

Ruzica Piskac, Thomas Wies, and Damien Zufferey. 2014b. GRASShopper. In Tools and Algorithms for the Construction and
Analysis of Systems, Erika Ábrahám and Klaus Havelund (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 124–139.

Xiaokang Qiu, Pranav Garg, Andrei Ştefănescu, and P. Madhusudan. 2013. Natural Proofs for Structure, Data, and Separation.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (Seattle,
Washington, USA) (PLDI ’13). ACM, New York, NY, USA, 231–242. https://doi.org/10.1145/2491956.2462169

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In Proceedings of the 17th Annual
IEEE Symposium on Logic in Computer Science (LICS ’02). IEEE Computer Society, USA, 55–74.

Mihaela Sighireanu. 2021. SL-COMP: Competition of Solvers for Separation Logic: Report on the Third Edition. Int. J. Softw.
Tools Technol. Transf. 23, 6 (dec 2021), 895–903. https://doi.org/10.1007/s10009-021-00628-w

Jan Smans, Bart Jacobs, and Frank Piessens. 2009. Implicit Dynamic Frames: Combining Dynamic Frames and Separation
Logic. In ECOOP 2009 – Object-Oriented Programming, Sophia Drossopoulou (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 148–172. https://doi.org/10.1007/978-3-642-03013-0_8

Jan Smans, Bart Jacobs, and Frank Piessens. 2012. Implicit Dynamic Frames. ACM Trans. Program. Lang. Syst. 34, 1, Article 2
(May 2012), 58 pages. https://doi.org/10.1145/2160910.2160911

Philippe Suter, Mirco Dotta, and Viktor Kunćak. 2010. Decision Procedures for Algebraic Data Types with Abstractions.
In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Madrid,
Spain) (POPL ’10). ACM, New York, NY, USA, 199–210. https://doi.org/10.1145/1706299.1706325

Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan Chin. 2016. Automated Mutual Explicit Induction Proof in
Separation Logic. In FM 2016: Formal Methods, John Fitzgerald, Constance Heitmeyer, Stefania Gnesi, and Anna Philippou
(Eds.). Springer International Publishing, Cham, 659–676. https://doi.org/10.1007/978-3-319-48989-6_40

Alfred Tarski. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5, 2 (1955), 285 – 309.
Moshe Y. Vardi. 1982. The Complexity of Relational Query Languages (Extended Abstract). In Proceedings of the Fourteenth

Annual ACM Symposium on Theory of Computing (San Francisco, California, USA) (STOC ’82). Association for Computing
Machinery, New York, NY, USA, 137–146. https://doi.org/10.1145/800070.802186

26

https://doi.org/10.1145/3371078
https://doi.org/10.1145/3371078
http://dl.acm.org/citation.cfm?id=647851.737404
https://doi.org/10.1145/964001.964024
https://doi.org/10.1145/2594291.2594325
https://doi.org/10.1007/978-3-642-39799-8_54
https://doi.org/10.1145/2491956.2462169
https://doi.org/10.1007/s10009-021-00628-w
https://doi.org/10.1007/978-3-642-03013-0_8
https://doi.org/10.1145/2160910.2160911
https://doi.org/10.1145/1706299.1706325
https://doi.org/10.1007/978-3-319-48989-6_40
https://doi.org/10.1145/800070.802186


FO-Complete Program Verification for Frame Logic

A OPERATIONAL SEMANTICS
⊥ ∗−→ ⊥
(𝑆, 𝐻,𝐴)

𝑥B𝑦
−−−→ (𝑆 [𝑥 ↦→ 𝑦], 𝐻,𝐴)

(𝑆, 𝐻,𝐴) 𝑥B𝑐−−−→ (𝑆 [𝑥 ↦→ 𝑐], 𝐻,𝐴)
(𝑆, 𝐻,𝐴) 𝑣B𝑏𝑒−−−−→ (𝑆 [𝑣 ↦→ 𝑏𝑒], 𝐻,𝐴)
(𝑆, 𝐻,𝐴)

𝑥B𝑦.𝑓
−−−−−→ (𝑆 [𝑥 ↦→ 𝑓 (𝑦)], 𝐻,𝐴), if 𝑆 (𝑦) ∈ 𝐴

(𝑆, 𝐻,𝐴)
𝑥B𝑦.𝑓
−−−−−→ ⊥, if 𝑆 (𝑦) ∉ 𝐴

(𝑆, 𝐻,𝐴)
𝑣B𝑦.𝑑
−−−−−→ (𝑆 [𝑣 ↦→ 𝑑 (𝑦)], 𝐻,𝐴), if 𝑆 (𝑦) ∈ 𝐴

(𝑆, 𝐻,𝐴)
𝑣B𝑦.𝑑
−−−−−→ ⊥, if 𝑆 (𝑦) ∉ 𝐴

(𝑆, 𝐻,𝐴)
𝑦.𝑓 B𝑥
−−−−−→ (𝑆, 𝐻 [𝑓 ↦→ 𝑓 [𝑆 (𝑦) ↦→ 𝑆 (𝑥)]]), if 𝑆 (𝑦) ∈ 𝐴

(𝑆, 𝐻,𝐴)
𝑦.𝑓 B𝑥
−−−−−→ ⊥, if 𝑆 (𝑦) ∉ 𝐴

(𝑆, 𝐻,𝐴)
𝑦.𝑓 B𝑐
−−−−−→ (𝑆, 𝐻 [𝑓 ↦→ 𝑓 [𝑆 (𝑦) ↦→ 𝑆 (𝑐)]]), if 𝑆 (𝑦) ∈ 𝐴

(𝑆, 𝐻,𝐴)
𝑦.𝑓 B𝑐
−−−−−→ ⊥, if 𝑆 (𝑦) ∉ 𝐴

(𝑆, 𝐻,𝐴)
𝑦.𝑑B𝑣
−−−−−→ (𝑆, 𝐻 [𝑓 ↦→ 𝑑 [𝑆 (𝑦) ↦→ 𝑆 (𝑣)]]), if 𝑆 (𝑦) ∈ 𝐴

(𝑆, 𝐻,𝐴)
𝑦.𝑑B𝑣
−−−−−→ ⊥, if 𝑆 (𝑦) ∉ 𝐴

(𝑆, 𝐻,𝐴)
𝑦.𝑑B𝑏𝑒
−−−−−−→ (𝑆, 𝐻 [𝑓 ↦→ 𝑑 [𝑆 (𝑦) ↦→ 𝑆 (𝑏𝑒)]]), if 𝑆 (𝑦) ∈ 𝐴

(𝑆, 𝐻,𝐴)
𝑦.𝑑B𝑏𝑒
−−−−−−→ ⊥, if 𝑆 (𝑦) ∉ 𝐴

(𝑆, 𝐻,𝐴)
𝑎𝑙𝑙𝑜𝑐 (𝑥 )
−−−−−−→ (𝑆 [𝑥 ↦→ 𝑎], 𝐻 [𝑓 ↦→ 𝑓 [𝑎 ↦→ 𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡𝑓 ], 𝑑 ↦→ 𝑑 [𝑎 ↦→ 𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡𝑑 ]], 𝐴∪{𝑎}) for every pointer 𝑓 and data field 𝑑 , for some 𝑎 ∉

𝐴

(𝑆 [𝑥 ↦→ 𝑎], 𝐻,𝐴)
𝑓 𝑟𝑒𝑒 (𝑥 )
−−−−−−→ (𝑆, 𝐻,𝐴\{𝑎}), if 𝑎 ∈ 𝐴

(𝑆 [𝑥 ↦→ 𝑎], 𝐻,𝐴)
𝑓 𝑟𝑒𝑒 (𝑥 )
−−−−−−→ ⊥, if 𝑎 ∉ 𝐴

(𝑆, 𝐻,𝐴)
𝑎𝑠𝑠𝑢𝑚𝑒 (𝜂 )
−−−−−−−−→ (𝑆, 𝐻,𝐴) if 𝑆 |= 𝜂

(𝑆, 𝐻,𝐴)
if 𝜂 then 𝑃 else𝑄
−−−−−−−−−−−−→ (𝑆 ′, 𝐻 ′, 𝐴′) if (𝑆, 𝐻 ) |= 𝜂 and (𝑆, 𝐻,𝐴) 𝑃−→ (𝑆 ′, 𝐻 ′, 𝐴′)

(𝑆, 𝐻,𝐴)
if 𝜂 then 𝑃 else𝑄
−−−−−−−−−−−−→ (𝑆 ′, 𝐻 ′, 𝐴′) if (𝑆, 𝐻 ) ̸|= 𝜂 and (𝑆, 𝐻,𝐴)

𝑄
−→ (𝑆 ′, 𝐻 ′, 𝐴′)

(𝑆, 𝐻,𝐴)
𝑃 ;𝑄
−−−→ (𝑆 ′′, 𝐻 ′′, 𝐴′′) if (𝑆, 𝐻,𝐴) 𝑃−→ (𝑆 ′, 𝐻 ′, 𝐴′) and (𝑆 ′, 𝐻 ′, 𝐴′)

𝑄
−→ (𝑆 ′′, 𝐻 ′′, 𝐴′′)

(𝑆, 𝐻,𝐴)
𝑏B𝑔 (𝑎)
−−−−−−→ (𝑆 ′, 𝐻 ′, 𝐴′) if (𝑆, 𝐻,𝐴) −→ (𝑆𝑔, 𝐻,𝐴) and (𝑆𝑔, 𝐻,𝐴)

𝑔
−→ (𝑆 ′

𝑐𝑎𝑙𝑙
, 𝐻 ′, 𝐴′) and (𝑆 ′

𝑐𝑎𝑙𝑙
, 𝐻 ′, 𝐴′) →

(𝑆 ′, 𝐻 ′, 𝐴′). Let 𝑔 be defined 𝑞 B 𝑔(𝑝). 𝑆𝑔 has new variables 𝑝 ↦→ 𝑎. 𝑔 is then inlined. 𝑆 ′ is 𝑆 ′
𝑐𝑎𝑙𝑙

without the 𝑝 variables. This is a call-by-value method of passing arguments to 𝑔.

B TRANSLATION OF FL TO FORD
Translation of FL to FORD is given in Figure 10.

C DETAILS FOR SECTION 5: BASE LOGIC
C.1 Proof of Lemma 5.1

Proof. (1) By structural induction on 𝛼 . The only rules that create new elements are those
for 𝑥 —𝑓→ 𝑦 and ∃ formulas. In both cases, the newly added elements are checked to be be
elements of 𝑑𝑜𝑚(ℎ).

(2) By structural induction on𝛼 . In definition of support for 𝑥 —𝑦→, note that if support is {𝑠 (𝑥)},
then since ℎ and ℎ′ agree on 𝑠 (𝑥), 𝑠 (𝑥) is in 𝑑𝑜𝑚(ℎ′) as well, and hence Supp(𝛼, 𝑠, ℎ′) = 𝑠 (𝑥).

27



Trovato et al.

Π(⊤) = ⊤
Π(⊥) = ⊥
Π(𝑐) = 𝑐

Π(𝑥) = 𝑥

Π(𝑓 (𝑡1, . . . , 𝑡𝑛)) = 𝑓 (Π(𝑡1), . . . ,Π(𝑡𝑛)) for any function 𝑓

Π(𝑡1 = 𝑡2) = (Π(𝑡1) = Π(𝑡2))
Π(𝑅(𝑡1, . . . , 𝑡𝑛)) = 𝑅(Π(𝑡1), . . . ,Π(𝑡𝑛)) for any relation 𝑅

Π(𝛼 ∧ 𝛽) = Π(𝛼) ∧ Π(𝛽)
Π(𝛼 ∨ 𝛽) = Π(𝛼) ∨ Π(𝛽)

Π(¬𝜑) = ¬Π(𝜑)
Π(𝑖𝑡𝑒 (𝛾 : 𝛼, 𝛽)) = 𝑖𝑡𝑒 (Π(𝛾) : Π(𝛼),Π(𝛽))

Π(𝑖𝑡𝑒 (𝛾 : 𝑡1, 𝑡2)]) = 𝑖𝑡𝑒 (Π(𝛾) : Π(𝑡1),Π(𝑡2))
Π(𝑆𝑝 (⊤)) = Π(𝑆𝑝 (⊥)) = 𝜙

Π(𝑆𝑝 (𝑐)) = Π(𝑆𝑝 (𝑥)) = 𝜙

Π(𝑆𝑝 (𝑓 (𝑡1, . . . , 𝑡𝑛))) =
⋃𝑛

𝑖=1{𝑡𝑖 } ∪
⋃𝑛

𝑖=1 Π(𝑆𝑝 (𝑡𝑖 )) if 𝑓 ∈ F𝑚
Π(𝑆𝑝 (𝑓 (𝑡1, . . . , 𝑡𝑛))) =

⋃𝑛
𝑖=1 Π(𝑆𝑝 (𝑡𝑖 )) if 𝑓 ∉ F𝑚

Π(𝑆𝑝 (𝑆𝑝 (𝜑))) = Π(𝑆𝑝 (𝜑))
Π(𝑆𝑝 (𝑆𝑝 (𝑡))) = Π(𝑆𝑝 (𝑡))
Π(𝑆𝑝 (𝑡1 = 𝑡2)) = Π(𝑆𝑝 (𝑡1)) ∪ Π(𝑆𝑝 (𝑡2))

Π(𝑆𝑝 (𝑅(𝑡1, . . . , 𝑡𝑛))) =
⋃𝑛

𝑖=1 Π(𝑆𝑝 (𝑡𝑖 )) for 𝑅 ∈ R
Π(𝑆𝑝 (𝛼 ∧ 𝛽)) = Π(𝑆𝑝 (𝛼)) ∪ Π(𝑆𝑝 (𝛽))
Π(𝑆𝑝 (𝛼 ∨ 𝛽)) = Π(𝑆𝑝 (𝛼)) ∪ Π(𝑆𝑝 (𝛽))

Π(𝑆𝑝 (¬𝜑)) = Π(𝑆𝑝 (𝜑))
Π(𝑆𝑝 (𝑖𝑡𝑒 (𝛾 : 𝛼, 𝛽))) = if 𝛾 then Π(𝑆𝑝 (𝛾)) ∪ Π(𝑆𝑝 (𝛼)) else Π(𝑆𝑝 (𝛾)) ∪ Π(𝑆𝑝 (𝛽))
Π(𝑆𝑝 (𝑖𝑡𝑒 (𝛾 : 𝑡1, 𝑡2))) = if 𝛾 then Π(𝑆𝑝 (𝛾)) ∪ Π(𝑆𝑝 (𝑡1)) else Π(𝑆𝑝 (𝛾)) ∪ Π(𝑆𝑝 (𝑡2))

Π(𝑆𝑝 ( [𝛼])) = 𝜙

Π(𝑆𝑝 (𝐼 (𝑡1, . . . , 𝑡𝑛))) =
⋃𝑛

𝑖=1 Π(𝑆𝑝 (𝑡𝑖 )) ∪ 𝑆𝑝𝐼 (𝑡1, . . . , 𝑡𝑛) for 𝐼 ∈ I,
where 𝑆𝑝𝐼 (𝑥) Blfp Π(𝑆𝑝 (𝜌𝐼 (𝑥))) and 𝐼 (𝑥) Blfp 𝜌𝐼 (𝑥)

Π( [𝛼]) = Π(𝛼)

Fig. 10. Translation from FL to FORD. For an FL formula 𝛼 , the translated FORD formula is Π(𝛼), recursively
defined above.

In definition of support for ∃𝑦.(𝑥 —𝑓→ 𝑦 : 𝛼), notice that 𝑆 = 𝑠 (𝑥)𝑈𝑆𝑢𝑝𝑝 (𝑎𝑙𝑝ℎ𝑎, 𝑠′, ℎ),
where 𝑠′ = 𝑠 [𝑦 ↦→ ℎ(𝑓 ) (𝑠 (𝑥))]. But since 𝑠 (𝑥) is in 𝑆 , ℎ′ agrees with ℎ on it, and hence
ℎ′ (𝑓 ) (𝑠 (𝑥)) = ℎ(𝑓 ) (𝑠 (𝑥)). Hence Supp(𝛼, 𝑠, ℎ′) = {𝑠 (𝑥)} ∪ Supp(𝛼, 𝑠′, ℎ) = Supp(𝛼, 𝑠, ℎ) (by
induction hypothesis). The rest of the cases are trivial.

(3) Follows from (2) since ℎ ⇂ 𝑆 agrees with ℎ on 𝑆 .
(4) Heaplet ℎ agrees with ℎ1 on 𝑑𝑜𝑚(ℎ1), and so Supp(𝛼, 𝑠, ℎ) = 𝑑𝑜𝑚(ℎ1). Heaplet ℎ agrees with

ℎ2 on 𝑑𝑜𝑚(ℎ2), and so Supp(𝛼, 𝑠, ℎ) = 𝑑𝑜𝑚(ℎ2). Hence 𝑑𝑜𝑚(ℎ1) = 𝑑𝑜𝑚(ℎ2).
□

C.2 Proof of Lemma 5.2
(1) Easily proved by structural induction on 𝛼 .
(2) Assume there are two subheaplets that satisfy 𝛼 . By (1), the supports of 𝛼 in each of them

would be their own domains. But by Lemma 5.1 (4), the heaplets of these domains must be
the same. Hence the heaplets are identical. □

28



FO-Complete Program Verification for Frame Logic

D DETAILS FOR SECTION 5: EXTENDED LOGIC SL-FL
The semantics of this logic extends the semantics on the base logic in the following ways. First,
we assume that each background sort is a complete lattice (for flat sorts like arithmetic, we can
introduce a bottom element and a top element to obtain a complete lattice). Next, we treat the
equations defining Supp in Figure 6 as recursive definitions with least fixpoint semantics, with
⊆ over sets as ordering. We modify Supp(ite(𝛾, 𝛼, 𝛽), 𝑠, ℎ) to be Supp(𝛾) ∪ Supp(𝛼, 𝑠, ℎ) if 𝑠, ℎ′ |= 𝛾

for some subheap ℎ′ of ℎ, and to be Supp(𝛾) ∪ Supp(𝛽) otherwise. We add support definitions for
recursively defined predicates and functions:

Supp(𝑅(𝑥), 𝑠, ℎ) = Supp(𝜌𝑅 (𝑥), 𝑠, ℎ)

Supp(𝐹 (𝑥), 𝑠, ℎ) = Supp(𝜇𝐹 (𝑥), 𝑠, ℎ)

where 𝑅(𝑥) = 𝜌𝑅 (𝑥) and 𝐹 (𝑥) = 𝜇𝐹 (𝑥) are the definitions of 𝑅 and 𝐹 , respectively. We can show that
the least fixpoint of the above equations defining the map Supp satisfies the properties described in
Lemma 5.1 for the extended logic as well.

The semantics of SL-FLis now easy to define.Wemodify the semantics given in Figure 7 as follows,
redefining the semantics for ite and defining the semantics for recursively defined predicates:

(𝑠, ℎ) |= ite(𝛼 ′, 𝛼, 𝛽) iff there exist 𝐻1, 𝐻2 : 𝐻1 ∪ 𝐻2 = 𝑑𝑜𝑚(ℎ), Supp(𝑠, ℎ ⇂ 𝐻1) = 𝐻1, and
((𝑠, ℎ ⇂ 𝐻1) |= 𝛼 ′ and (𝑠, ℎ ⇂ 𝐻2) |= 𝛼) or ((𝑠, ℎ ⇂ 𝐻1) ̸|= 𝛼 ′ and (𝑠, ℎ ⇂ 𝐻2) |= 𝛽)

(𝑠, ℎ) |= 𝑅(𝑥) iff (𝑠, ℎ) |= 𝜌 (𝑥), where 𝑅’s definition is 𝑅(𝑥) = 𝜌 (𝑥)

We can prove lemmas analogous to Lemma 5.2 for the extended logic.
Finally, we can translate the extended logic to frame logic as well, modifying the translation

given in Figure 8 for ite formulas and translating definitions:

Π(ite(𝛼 ′, 𝛼, 𝛽)) = ite(Π(𝛼 ′),Π(𝛼),Π(𝛽))
Π(𝑝 (𝑡)) = 𝑝 (𝑡)
Π(𝑅( ®𝑥)) = 𝑅( ®𝑥)
Π(𝑥 .𝑓 )) = 𝑓 (𝑥)
Π(𝑓 (𝑡)) = 𝑓 (Π(𝑡))

Π(ite(𝛼, 𝑡, 𝑡 ′)) = ite(𝛼,Π(𝑡),Π(𝑡 ′)
Π(𝐹 (𝑡)) = 𝐹 (Π(𝑡))

Π( 𝑅( ®𝑥) :=lfp 𝜌 ( ®𝑥) ) = 𝑅( ®𝑥) :=lfp Π(𝜌 ( ®𝑥))
Π( 𝐹 ( ®𝑥) :=lfp 𝜇 ( ®𝑥) ) = 𝑅( ®𝑥) :=lfp Π(𝜇 ( ®𝑥))

We can now prove the lemma analogous to Lemma 5.3:

Lemma D.1. Let 𝑔 be a global heap (a heaplet where with domain 𝐿𝑜𝑐). Let 𝛼 be an SL-FLformula.

• 𝑔 |= Π(𝛼) iff there exists a heaplet ℎ of 𝑔 such that (𝑠, ℎ) |= 𝛼 .
• If 𝑔 |= Π(𝛼), then Supp(𝛼, 𝑠, 𝑔) = 𝑆𝑝 (Π(𝛼)). □

E DETAILS OF EVALUATION
E.1 Definitions of Datastructures
The definitions of the data structures used in the benchmarks and use the explicit support and
cloud operators. The definition for singly-linked lists is as given below:

List (x) := ite(𝑥 = nil,⊤, List (next (𝑥)) ∧ 𝑥 ∉ Sp(List ( [next (𝑥)]))

29



Trovato et al.

and the definition for doubly-linked lists is similar, with the addition of a constraint that if next (𝑥)
is not nil then its previous pointer should point back to 𝑥 ,

Dll(𝑥) := ite(𝑥 = nil,⊤, ite(next (𝑥) = nil,⊤,
𝑥 = prev(next (𝑥)) ∧ Dll(next (𝑥)) ∧ 𝑥 ∉ Sp(Dll( [next (𝑥)]))))

Next, to define sorted lists, we rely on an auxiliary definition of the minimum element in a list
and then a (non-decreasing) sorted list is simply a list where the front key is no greater than the
minimum value of its tail, which is itself also a sorted list:

Min(𝑥) := ite(𝑥 = nil, +∞, ite(key(𝑥) < Min(next (𝑥)), key(𝑥),Min(next (𝑥))))
Sorted (𝑥) := ite(𝑥 = nil,⊤,

Sorted (next (𝑥)) ∧ 𝑥 ∉ Sp(Sorted ( [next (𝑥)])) ∧ key(𝑥) ≤ Min(next (𝑥)))
In our implementation of this definition, +∞ is simply an additional variable that is treated as
having an infinitely large value.

For circular lists, we define list segments using the Lseg(·) definition and we then define a circular
list as empty or reaching itself through its next pointer,

Lseg(𝑥,𝑦) := ite(𝑥 = 𝑦,⊤, ite(𝑥 = nil,⊥,
Lseg(next (𝑥), 𝑦) ∧ 𝑥 ∉ Sp(Lseg( [next (𝑥)], 𝑦))))

Circ(𝑥) := ite(𝑥 = nil,⊤, Lseg(next (𝑥), 𝑥) ∧ 𝑥 ∉ Sp(Lseg( [next (𝑥)], 𝑥)))
Our definition for binary search trees, like for sorted lists, relies on a definition of the minimum and
maximum values in a tree and the binary search property is specified by requiring the maximum
element in the left subtree to be less than the key of the root and the minimum element in the right
subtree to be greater than the key of the root. The definitions of Min and Max are similar to that
for sorted lists and so are omitted; we note that the default value for Max if 𝑥 is nil is −∞. Then,
the definition of a binary search tree is

BST (𝑥) := ite(𝑥 = nil,⊤,
BST (left (𝑥)) ∧Max (left (𝑥)) < key(𝑥) ∧ BST (right (𝑥))
∧ key(𝑥) < Min(right (𝑥)) ∧ 𝑥 ∉ Sp(BST ( [left (𝑥)]))
∧ 𝑥 ∉ Sp(BST ( [right (𝑥)])) ∧ Sp(BST ( [left (𝑥)])) ∩ Sp(BST ( [right (𝑥)])) = ∅)

In addition to our normal requirement that 𝑥 not be in the support of either of the subtrees we also
specify here that the supports of the subtrees must be disjoint; together these properties express
that 𝑥 is indeed a tree.
The definitions for Treaps and Red-Black Trees are similar to this definition for binary search

trees, augmented with their appropriate additional constraints, the max heap property on the
priorities in the Treap and the red-black property for Red-Black trees. The implementation of the
max heap property for the Treap is in the same fashion as the binary search property for binary-
search trees, except that we just require that the priority of the root be greater than the maximum
priority of either subtree. For red-black trees we add a recursive definition which determines the
(maximum) black-height of a tree and then a tree is a red-black tree if both subtrees have the same
black height and the root is black or both children are black.

E.1.1 Identifying Buggy Programs. To evaluate the detection of buggy programs using the FLV tool,
we took five of our benchmarks and removed a conjunct from the pre-condition. Since during the
construction of our benchmark suite, one common issue was omitting necessary constraints on the
support (such as that support for the lists in singly-linked list append be disjoint), we have included

30



FO-Complete Program Verification for Frame Logic

several buggy programs that omit these support conditions, as well as other programs omitting
non-support conditions. In particular, our buggy benchmarks are derived from the Singly-Linked
List append benchmark, where we removed the pre-condition that the two lists be disjoint; the
Sorted Merge function (used in Merge Sort), where we similarly removed the condition that the two
lists be disjoint; the Sorted Concat function (used in Quicksort), where we removed the condition
that the maximum element of the first list be less than the minimum element of the second; the
Circular List Find End function (used in Circular List Delete), where we removed a pre-condition
that the head and tail be distinct; and the BST Remove Root function (used in BST Delete), where we
removed the condition that the tree be non-nil. All of these bugs were either bugs we encountered
in the process of building our benchmark suite or are similar to bugs we encountered in the process.
With the bug in the singly-linked list append, the tool finished and reported that the program

was not verified within about four minutes. Specifically, as expected, the block representing the
base case of the recursion succeed in verification and the block containing the recursive call failed.
With the bug in the sorted merge program, the two base cases still verify but attempts at verifying
either of the blocks containing the recursive cases, timeout at twenty minutes; in fact within the
time limit it does not report either success or failure in verifying the pre-condition of the recursive
call. The bug in the sorted concatenation similarly verifies its base case and times out attempting to
verify the recursive case, though in this case, the pre-condition of the recursive call is satisfied. For
the bug in circular list find end, the base case in this case does not satisfy the post-condition and the
tool reports that this block does not verify within ten seconds and the tool times out attempting to
verify the recursive case. With this bug, the tool is able, within the time limit, to report that it could
not verify the pre-condition of the recursive call. Finally, for the BST remove root bug, this function
has three base cases, one of which is valid and the other two of which are not and the tool reports
that they do not verify within about thirty seconds each; again the tool times out attempting to
verify the recursive case and does report success of failure of verifying the pre-condition.

31


	Abstract
	1 Introduction
	2 Frame Logic and Program Verification
	2.1 First-Order Logic with Recursive Definitions (FORD)
	2.2 Frame Logic with Guarded Quantification
	2.3 Program Verification
	2.4 Eliminating Quantification Using the Cloud Operator

	3 Generating Verification Conditions in Frame Logic
	3.1 Hoare triples over Basic Blocks
	3.2 Verification Condition Generation

	4 Validating Verification Conditions
	4.1 Stage 1: Translating Quantifier-Free FL to Quantifier-Free FORD
	4.2 Stage 2: Reasoning with FORD Formulas using Natural Proofs and SMT Solvers

	5 A Separation Logic with Frame Logic Inspired Semantics
	5.1 Base logic SL-FLb
	5.2 Extending the base logic to background sorts and recursive definitions

	6 Implementation and Evaluation
	6.1 Implementation
	6.2 Benchmark Suite
	6.3 Evaluation

	7 Related Work
	8 Conclusions
	References
	A Operational Semantics
	B Translation of FL to FORD
	C Details for Section 5: Base Logic
	C.1 Proof of Lemma 5.1
	C.2 Proof of Lemma 5.2

	D Details for Section 5: Extended logic SL-FL
	E Details of Evaluation
	E.1 Definitions of Datastructures


