
© 2024 Adithya Murali

TOWARDS ELIMINATING EXPERT CREATIVE HELP IN AUTOMATED REASONING

BY

ADITHYA MURALI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2024

Urbana, Illinois

Doctoral Committee:

Professor Madhusudan Parthasarathy, Chair
Professor Mahesh Viswanathan
Assistant Professor Gagandeep Singh
Professor Ranjit Jhala, University of California, San Diego
Professor Swarat Chaudhuri, The University of Texas at Austin

Abstract

The democratization of automated reasoning is a dream for computer scientists like few
others. However, despite many years of progress there continue to exist fundamental obstacles
in the way. In this thesis we identify one of the key obstacles: the inescapable need for expert
help encountered when using automated reasoning tools or algorithms to prove rich sets of
properties. This help takes many forms across the many reasoning frameworks that exist,
but we argue that in many widely used frameworks the help is a technical intervention that
experts are able to come up with by studying a problem, simply using their experience and
creativity. In this work we seek to unravel the nature of this creative technical help and take
steps towards eliminating it.

Although at first sight the workflow we describe may appear informal or unorganized, our
study reveals that it is possible to formally characterize the limits of the reasoning power of
various automatic tools and heuristics. Furthermore, we show that the expert help in fact
bridges (again in a formal sense) the gap between the limits of the reasoning algorithms and
the power needed to prove the properties desired. We dub such gaps in automated reasoning
creativity gaps and develop new theoretical tools to formally characterize them.

Understanding the role of the expert help in a formal sense allows us to formulate well-
defined computational problems to solve in order to bridge creativity gaps. We argue that such
problems can be solved effectively using a form of learning we call logic learning in this thesis,
which refers to the problem of learning logical formulas from rich example structures/logical
models. We develop new frameworks and algorithms for logic learning and use them to bridge
different creativity gaps.

In a third part of our work, we apply the lens of thinking about the dynamics between
expert help and automation to interrogate design principles for new verification paradigms
that can minimize the kind of user frustrations we focus on in this work, namely dealing with
the opaqueness of creativity gaps and the inability to provide the required help to bridge the
gaps without deep verification expertise. We formulate the problem of designing a predictable
verification framework and develop a new framework for verifying heap manipulating programs
that offers a predictable verification experience.

We believe that the contributions of this work take significant steps towards eliminating
creativity gaps in automated reasoning, and in doing so pave the way further for progress
towards the democratization of automated reasoning.

ii

To Smriti and Loki
You give my life meaning

iii

Table of Contents

Chapter 1 Introduction . 1

Chapter 2 Complete FO Reasoning for Properties of Functional Programs 9
2.1 Introduction . 9
2.2 Overview . 14
2.3 Preliminaries . 19
2.4 A FLUID Logic . 24
2.5 Completeness of Definition Unfolding and Quantifier-Free Reasoning 28
2.6 FLUID reasoning in Liquid Haskell . 36
2.7 FLUID Reasoning and Reasoning in Leon 42
2.8 Expressiveness Results on the FLUID Fragment 45

Chapter 3 Model-Guided Synthesis of Inductive Lemmas for FO+lfp 49
3.1 Introduction . 49
3.2 Preliminaries and Problem Definition . 54
3.3 The FOSSIL Algorithm for Sequential Lemma Synthesis 62
3.4 Synthesis and Counterexample Generation Engines 69
3.5 Soundness and Relative Completeness . 72
3.6 Implementation and Evaluation . 74

Chapter 4 Predictable Verification using Intrinsic Definitions 84
4.1 Introduction . 84
4.2 Intrinsic Definitions of Data Structures . 90
4.3 Preliminaries: Programs, Correctness, and Ghost Code 93
4.4 Fix What You Break (FWYB) Verification Methodology 98
4.5 Soundness of FWYB . 106
4.6 Programming in the FWYB Methodology 110
4.7 Illustrative Data Structures and Verification 115
4.8 Implementation and Evaluation . 127

Chapter 5 Synthesizing Axiomatizations using Logic Learning 133
5.1 Introduction . 133
5.2 Example: Axiomatizing Equivalence Relations 138
5.3 The Axiom Synthesis Problem . 141
5.4 Learning-Based Axiom Synthesis Framework 144
5.5 Axiomatizing Classes of Frames in Modal Logic 149
5.6 Axiomatizing Languages with Kleene Star 159

iv

Chapter 6 Related Work and Discussion . 167
6.1 Heap Verification: Logics and Reasoning . 167
6.2 Reasoning about Unbounded Structures: Heuristics and Creative Help 170
6.3 Identifying Limitations of Heuristics . 173
6.4 Bridging Creativity Gaps using Logic Learning 177

Chapter 7 Conclusion and Future Work . 184
7.1 Better Frameworks for Automated Verification 184
7.2 Beyond Verification . 193

References . 196

v

Chapter 1: Introduction

The desire for bug-free software is a problem as old as computer science. While testing
is the most widely adopted mechanism for assuring software correctness, several infamous
incidents in recent years have shown that even the most rigorously tested software systems can
violate privacy of personal data [1], compromise financial security [2], or endanger the physical
safety [3, 4] of users. As a result, formal verification is being increasingly advocated to serve
as the standard for assuring software quality. Verification requires the engineer to describe
the desired behavior of a piece of software mathematically and write a computer-checkable
proof that the code meets the given specification. On the face of it, this is not a particularly
unreasonable ask. Programmers in fact routinely argue (albeit informally) the correctness of
thousands of theorems about their code, ranging from simple properties like type-correctness
to complex properties like eventual consistency of a blockchain. All formal verification seems
to require on top of this is to do the reasoning in a way that computers can check!

However, formal verification in practice is intellectually demanding, requiring experts with
many years of training in formal logic and deductive reasoning techniques. This is obviously
not desirable, and it makes adoption extremely hard. This tension between the ease of
adoption and the strength of guarantees has in practice always resolved towards eschewing
verification, with the exception of a few complex software systems. To make verification
easier to adopt, we must automate the reasoning involved as much as possible. This argument
is not new, and techniques for automated reasoning have made massive strides in the last few
decades. These advances have led to many important reliable artifacts that would not have
been possible without automation, such as device drivers [5], operating system kernels [6],
and large fault-tolerant distributed systems for the cloud [7, 8].

Despite these successes automated verification is at an impasse today, both in terms of
technical advances as well as practical adoption. This is because automation for software
verification requires crucial technical intervention from verification experts to work, i.e.,
automated verification isn’t really automatic! Indeed, the successes of automated verification
cited above have required teams with significant verification expertise. Note that this is
different from the effort or expertise required to write formal specifications. Even with fixed
specifications, current automated verification tools require expert technical help in order to
work effectively.

The Problem with Expert Creative Help Existing automated reasoning paradigms
practice a two-part approach:

1

(1) A human, typically an expert, uses their creativity () to formally state their high-level
arguments about a system’s correctness, and
(2) An automated reasoning engine mechanically (2) verifies the stated arguments.

The two-part () + (2) view is a lens that applies to many reasoning problems. For
example, in automated program verification, the expert breaks down the problem into modular
specifications in the form of contracts for individual methods and loop invariants, and then
an automated engine like Dafny [9] effectively verifies the methods. Another example is
interactive theorem proving in tools like Coq [10], where the expert breaks down a theorem
into intermediate lemmas such that SMT solvers [11, 12] can verify that each step follows
from the previous steps. Emerging work in the field of AI-driven theorem proving adopts this
lens as well [13]. One can even identify these separation of intellectual abilities in applications
beyond verification. For example, in mathematical and scientific reasoning, experts come up
with axioms to characterize a domain and may then use automatic tools to reason using those
laws. As our field moves towards making impact in other scientific disciplines, discovering
such laws is a creative task that must be automated.

The above discussion indicates the first problem with the required creative help: it’s
pervasive and seemingly inescapable. The second problem is that it is not easy to provide.
One may be tempted to think that perhaps this creative help is routine for programmers, but
is simply hard to automate. After all, we did argue above that programmers argue informally
the correctness of many theorems during their development process. However, the technical
help required to make automated reasoning tools work is not of this nature. It turns out
that one needs to know the internals of verification tools in order to provide this help. It has
less to do with stating arguments in a proof and more to do with convincing the particular
verification mechanism being used!

Consider, for example, the following well-studied problem in the literature: verification of
programs with specifications written in a rich logic that uses recursively defined predicates.
This problem is not recursively enumerable even for loop-free and function call-free basic
blocks. In other words, it is impossible for any technique to work 100% of the time. As a
result, builders of verification tools often implement heuristics that they believe may work
in practice. This brings forth two issues. First, there almost always exist simple natural
examples that are not solvable by incomplete heuristics [14]. Second and more importantly,
when the heuristics simply give up on a problem and say “I don’t know”, an average user
of the tool is hopelessly stuck! In contrast, an expert knows the heuristics employed by the
particular verification tool and can creatively rewrite the problem or provide extra help in
such a way that overcomes the limitation of the heuristics and allow the tool to succeed.

2

Note that the expert’s intervention has no formal description: It is simply creative “magic”1.

This inescapable requirement for crucial and technical creative help creates a creativity
gap in automated verification.

SUMMARY OF CONTRIBUTIONS

In the sequel we develop novel theory, algorithms, and tools to tackle the problem of
creativity gaps. At the broadest level, our work argues the following thesis statement:

The crucial reliance on expert creative help in automated reasoning can be
effectively mitigated by (a) Precisely and formally identifying the power of
automation strategies and heuristics— consequently identifying the role of
expert help, and then (b) bridging the creativity gaps using logic learning.

We now summarize our contributions2 across three distinct themes explored in this work:

I. Identifying Creativity Gaps: The reason experts are forced to turn to their creativity
is because verification tools working with incomplete logics automate their reasoning
using heuristics. The first theme explores the argument that we need to understand
the shortcomings of these heuristics to identify how to automate human help. The
contributions of this part of the thesis are a set of foundational theoretical tools and
results that precisely characterize the reasoning power of several popular heuristics
used in program verification.

II. Bridging Creativity Gaps using Learning: The second theme explores a rather
bold claim: the solution to automating the creativity gap lies in learning-based synthesis.
Specifically, the work in this thesis approaches bridging the creativity gaps in automated
reasoning using data-driven logic learning, which refers to learning logical formulas
or expressions from examples. The contributions of this part are (a) a novel algorithmic
framework for learning logical formulas from examples in the form of first-order models,
(b) accompanying software artifacts that instantiate this framework to address two
kinds of creativity gaps in automated reasoning (inductive lemma synthesis and axiom
synthesis), and (c) rigorous evaluation of the artifacts which strongly argues the claim
explored in this theme.

1We in fact study this particular problem in this thesis and provide new theoretical results on the limits
of popular verification heuristics as well as a formal characterization of the role of expert creative help (see
summary of contributions below).

2The contributions in this work have appeared across the following peer-reviewed publications co-authored
by the author of this thesis, appearing as citations [15], [16], [17], and [18].

3

III. Designing Reasoning Paradigms for the Future: The final theme uses the
() + (2) lens on automated reasoning articulated above to explore the design of
reasoning paradigms for the future. Specifically, the work on this theme seeks a program
verification paradigm that balances the trade-off between the burden on automation
and the creative burden on the user such that (a) the user is given a clear description up
front of the creative help required from them— which they are able to work out purely
logically— independent of the verification mechanism used by the automation, and
(b) the automation simply confirms whether the provided creative help is sufficient to
solve the verification problem at hand. In particular, the automation tool cannot say “I
don’t know”. The contributions of this part are the definition of this new Predictable
Verification paradigm (as opposed to paradigms with opaque creativity gaps that breed
user frustration) and the theoretical development, implementation, and evaluation of a
particular predictable verification framework for verifying heap-manipulating programs3.

Author’s Note on Scope for Impact: We believe that the position and contributions of
this thesis have the potential to be truly transformational. The need for expert intervention
to effectively utilize powerful automated reasoning often makes the field appear arcane to
non-experts and outsiders, which is, unfortunately, in direct conflict with the objective of the
field to provide mechanisms for producing correct software at large. Worse, the difficulty is
sometimes mistaken for juvenescence— this author has heard the unfortunate remark that
verification projects don’t often “graduate beyond research labs” all too often.

This thesis takes an important first step towards viewing verification paradigms in a more
comprehensive manner, inclusive of the expert help that makes them tick. We move the
arcane expert help from the domain of an art to a rigorous science, showing that it can be
studied formally. We also provide supporting evidence for how this awareness bears fruit: one
can conceive algorithmic frameworks to automate outright the now formally characterized
expert help (as we do in Chapter 3), or perhaps redesign the paradigms themselves so that
the required expert help is a first-class concern and has formally predictable impact on the
efficacy of automation (which we do in Chapter 4). Other works by this author that are
not included in this thesis explore related ideas in this space: the work in [19, 20] explores
the design of a logic for specifying properties of heap manipulating programs that is more
amenable to automated verification than other contemporary logics for the same problem,
and the work in [21] develops automated verification techniques for this logic that have
completeness properties similar to the one we show in Chapter 2. The work in [22] identifies

3The publication associated with this theme [18] was recognized with the ACM Europe Best Paper Award:
https://europe.acm.org/awards

4

https://europe.acm.org/awards

a class of memory-safety specifications and a class of programs where the expressiveness of
the class is traded for fully decidable automation with no extra user help; the work in [23]
takes this even further and shows that such programs can be synthesized automatically from
the limited specifications or even examples.

Finally, we note here the rich and exciting possibilities for advancing this agenda into the
future. To design better frameworks for automated verification, we must tackle foundational
questions about the power of reasoning algorithms and heuristics, build tools with better
automation support that offer more than deductive reasoning (perhaps inductive reasoning
based on examples, natural language, experience, etc.), investigate a wide variety of verification
frameworks and programming paradigms (concurrency, distributed systems, neural networks,
etc.) with an eye on offering a predictable verification experience for the user, and more
generally ask ourselves what it takes to bridge the gap between intuitive arguments and
formal proofs. We discuss these directions and the approaches the contributions of this thesis
indicate for tackling them in Chapter 7.

Detailed Contributions

(A) Identifying Creativity Gaps in Instantiation-Based Verification Practical
verification problems involve complex specifications that are stated in incomplete logics. This
means that no technique can prove all valid programs, so developers of verification tools often
end up building a set of complex and opaque heuristics. Consequently, when the heuristics
fail, users do not know why they fail.

Motivated by this observation, we study a popular heuristic for verifying functional
programs called UQFR: Unfolding definitions followed by Quantifier-Free Reasoning (usually
performed by SMT solvers). This is a very effective heuristic that has been used in many
verification tools [24, 25, 26] over the years. However, despite its efficacy, UQFR fails on very
simple problems and users do not understand why this happens.

In Chapter 2, we identify a new logic called FLUID (First-Order Logic Under Inductive
Definitions) which provides a sound abstraction of the verification problems posed by users.
We find that UQFR is complete for FLUID, i.e., UQFR works precisely when the FLUID
abstraction is provable, and fails when the abstraction is too weak. Further, we show that
when UQFR fails, there always exist spurious counterexamples to the FLUID abstraction
called rogue nonstandard models. This shows that the role of human creative help () in
aiding tools is to provide hints (in the form of inductive lemmas) that eliminate such spurious
counterexamples.

5

(B) Filling the Creativity Gap: Synthesizing Lemmas for Heap Verification The
second major thrust of this thesis is the automation of human creative effort in verification.
In this direction, we address the creativity gap that arises when reasoning using UQFR in
the context of imperative programs over dynamic heaps [15]. Verification problems in this
setting are stated in a very general and powerful logic: First-Order Logic with Recursive
Definitions. Prior results in literature [27] on identifying creativity gaps for this problem
show results analogous to those shown in Chapter 2, namely that the role of human help is
precisely the creative task of providing inductive lemmas that bridge the gaps left by the
UQFR heuristic. In other words, the verification problem splits into two precise pieces: (1)
creatively () come up with inductive lemmas such that (2) UQFR can mechanically (2)
verify the given program using the lemmas. This motivates the automation of inductive
lemma synthesis.

We develop in Chapter 3 a new data-driven logic learning framework called Model-Guided
Synthesis that is based on learning quantified first-order formulas from novel counterexample
first-order models. Our approach solves several important challenges along the way: we
formalize for the first time the idea of counterexample models and create several new kinds of
counterexamples beyond the simple positive and negative examples known in the literature.
Most importantly, unlike synthesis problems in literature, the salient feature of this creative
task is that the synthesis problem has no logical specification! Model-Guided Synthesis
handles this by using several different carefully designed algorithmic components in concert
with a logic learner to gradually elicit valid and useful lemmas. This chapter also contributes
a software artifact ‘FOSSIL’ (First-Order Solver with Synthesis of Inductive Lemmas) for
automatically synthesizing inductive lemmas using Model-Guided Synthesis, along with a
discussion of its implementation and its evaluation on a suite of verification problems that
require inductive lemma synthesis.

(C) Rethinking Verification Paradigms: Predictable Verification using Intrinsic
Specifications In the above discourse we primarily used the two-part () + (2) lens to
frame existing automated reasoning paradigms. However, the lens also embodies the idea
that to design reasoning paradigms that are of low cognitive burden for users it is important
to explicitly model the role of the user and study it as rigorously as we study the mechanical
parts of automated reasoning. This interpretation then raises the following question: what
are the trade-offs between the creative and mechanical parts of various reasoning tasks?

In Chapter 4 we make a preliminary incursion into this space by defining the idea of
Predictable Verification. A predictable program verification paradigm is one where (1) the

6

user is asked up front to provide a fixed set of annotations (i.e., the creative help) that are
independent of the underlying verification mechanism, and (2) the verification, given the
annotations, can be completely automated. In other words, we want no more frustrating
proof engineering (e.g., inductive lemmas, instantiation triggers, etc.)! This would yield a
framework where the user simply expresses arguments for program correctness4, and then an
automated engine checks their work effectively.

Specifically, we study the problem of verifying programs manipulating heap datastructures,
which the reader may remember is relevant to our study in Chapters 2 and 3. In these earlier
chapters we formally understood the limitations of unrolling based heuristics in dealing with
specifications involving recursive definitions, and used learning-based synthesis to bridge the
creative task of coming up with inductive lemmas. In Chapter 4 we eschew this framework
entirely, introducing the idea of Intrinsically Defined Datastructures and study the problem
of verifying programs against specifications involving intrinsically defined datastructures
as opposed to recursively defined ones. Intuitively, an intrinsic specification says what a
program state looks like when one views it from the ‘inside’ and is therefore an inherently
local definition, whereas recursive definitions offer a ‘global’ view of the state. This has
several useful consequences. Crucially, it turns out that we can model the creative help ()
required to verify a program against intrinsic specifications as a set of simple, local arguments
that talk about how the local view of the state changes as the program modifies the state.

We consequently develop a novel verification methodology based on augmenting programs
with creative help in the form of ghost code (code which does not execute but provides
a proof of the analyzed program in a computational way). We show that the mechanical
task (2) of verifying programs against intrinsic specifications given the creative help is
decidable. This then ensures a predictable verification experience in practice, as the decision
problem can automated effectively using SMT solvers [11, 12]. We empirically study the
expressiveness of intrinsic definitions for several common classes of heap datastructures and
evaluate the verification methodology on a suite of programs manipulating the datastructures.
In particular, our verification of an overlaid datastructure consisting of a linked list and a
binary search tree (see Section 4.7.5) is a case study that offers compelling evidence towards
the efficacy of the contributions.

(D) Filling Creativity Gaps by Discovering Laws One of the most beautiful aspects
of human intelligence is our ability to formulate abstract rules for navigating new domains.
This is especially prominent in mathematical and scientific inquiry, where the scientist may

4Given the right language, it may even be enough to state the arguments at a high level. This is a
wonderful avenue for further research, which we leave to the future.

7

even understand the phenomenon at hand precisely, but they want to analyze it at a higher
level of abstraction and draw interesting conclusions by operating within the abstraction. For
example, doctors have a detailed understanding of the human lung and its dynamics, but
when analyzing X-rays of lungs they talk about ‘masses’ or ‘honeycombing’ in the images
and use these concepts in their diagnosis. Automating this creative aspect of reasoning
encompasses a great many technical problems such as acquiring relevant concepts, forming
compositional abstractions, learning to reason within the abstract space, and continually
learning better abstractions with experience.

Unsurprisingly, the problem of synthesizing axioms is also of great relevance to program
verification. We study in Chapter 5 the problem of axiom synthesis for reasoning domains
in programming languages like Kleene Algebras. Although the problem of finding axioma-
tizations is extremely old, we define in this part of the thesis a new formulation of axiom
synthesis as a computational problem. This definition opens up the use of computational
tools for finding axioms in many complex domains, including those where the objects of
study may not even have a logical specification. Since the domain under axiomatization may
not have a clear logical description, the associated problem of synthesizing axioms has no
clear logical description either! We hence develop Learning-based Axiom Synthesis (LAS), a
variant of the Model-Guided synthesis framework developed in Chapter 3, for automatically
synthesizing axioms. We then we use the framework to automatically synthesize axioms for
modal logics and Kleene algebras, finding axioms that were hitherto only known to have
been formulated by expert logicians.

Outline The remainder of this thesis is organized as follows. We present the FLUID logic
for characterizing creativity gaps in Chapter 2. We then present the Model-Guided Synthesis
technique for bridging creativity gaps automatically using logic learning in Chapter 3, and
use it to automate the creative task of coming up with inductive lemmas. In Chapter 4 we
introduce intrinsically defined datastructures and explore the idea of designing a verification
paradigm that offers predictable verification. We then return to the automation of another
creative task in Chapter 5, where we use model-guided synthesis to learn axiomatizations. In
Chapter 6 we reflect on the design choices we make in our work and discuss the connections to
related work. Chapter 7 concludes with a few hopeful thoughts on potential future directions.

8

Chapter 2: Complete FO Reasoning for Properties of Functional Programs

Several practical tools for automatically verifying functional programs (e.g., Liquid

Haskell and Leon for Scala programs) rely on a heuristic based on unrolling recursive
function definitions followed by quantifier-free reasoning using SMT solvers. In this chapter
we uncover foundational theoretical properties of this heuristic, revealing that it can be
generalized and formalized as a technique that is in fact complete for reasoning with combined
First-Order theories of algebraic datatypes and background theories, where background
theories support decidable quantifier-free reasoning. The theory developed in this chapter
explains the efficacy of these heuristics when they succeed, explain why they fail when they
fail, and the precise role that user help plays in making proofs succeed.

2.1 INTRODUCTION

The automation of program verification has been revolutionized with the advent of efficient
logic engines that check validity of logical formulas over various theories that capture domains
that programs work with (arithmetic, strings, arrays, algebraic datatypes, pointer-based
heaps, etc.). In particular, quantifier-free logics over various theories admit decidable
validity checking, and further, permit decision procedures for the combination of theories
(Nelson-Oppen style combinations) that have been realized by efficient DPLL(T)-based SMT
solvers [11, 28, 29, 30].

However, automation’s grip becomes tenuous when it comes to the verification of first-order
properties of functional programs over algebraic data types (ADTs) such as lists or trees over
basic types like integers. Functional programs over ADTs can be expressed mathematically
using a set of recursively defined functions over types. Programs hence can be expressed as a
set of first-order definitions of functions Defs that are universally quantified over their inputs.
The goal of verification, then, is to determine whether a particular FO (First-Order) theorem
T involving these defined (or interpreted) functions is mathematically valid under a set of
definitions Defs .

Automation is Impossible in Theory Even though the theorem T that needs to be
validated is universally quantified (and hence can be seen as a quantifier-free formula),
reasoning about the validity of T under interpreted definitions Defs is extremely hard. The
validity problem is not decidable (while validity of T under uninterpreted functions is typically

The material in this chapter is reproduced from the publication cited as [17] co-authored by the author
of this thesis, with minor changes.

9

decidable). Worse, the problem is not even recursively enumerable (there is no complete
proof system nor a semi-decision procedure that is guaranteed to terminate on at least all
valid theorems). A simple proof of this fact is that we can define addition and multiplication
as defined (interpreted) functions using recursion, and use universal quantification to specify
the neither decidable nor recursively enumerable problem of determining the non-existence
of solutions to Diophantine equations [31].

Automation is Effective in Practice Despite the above hardness, there has been
significant progress in systems that provide varying degrees of automation to the process of
verifying such theorems. Liquid Haskell (LH) [32] and Leon/Stainless [26, 33] both
exploit the automation provided by logic engines for decidable quantifier-free reasoning (i.e.,
SMT solvers) to prove FO theorems. Extrinsic-style verification in LH reduces checking
quantifier-free (implicitly universal) properties of functions over ADTs to proving pre- and
post-condition contracts that assert those properties in the code (“proofs”) written by the
verification engineer 1. The Leon verifier [33] (as well as its successor Stainless [26]) uses a
similar style of reasoning for Scala programs with quantifier-free contracts, where the contracts
themselves are written using recursively defined pure Scala functions. Leon verifies each
function’s contract by compiling the body of the function to a verification condition (VC),
modeling functions called in the body using defined functions and assuming they satisfy their
contracts 2. While LH and Leon provide different mechanisms for users to prove properties
via induction and auxiliary lemmas, we observe that they share a common fundamental
interface to logic engines: verification is reduced to proving VCs of the form Defs → φ where
φ is universally quantified. LH treats functions defined in Defs as uninterpreted using a
heuristic called logical evaluation that finitely unfolds the definitions for terms that appear in
φ. Leon’s strategy is also to unfold the recursive definitions based on function applications
that occur in φ. However, it differs from LH in that it does this recursively, unfolding
definitions iteratively for larger and larger depths and assuming that such unfolded calls to
functions satisfy their contract.

To summarize, both tools automate verification via logical engines by (1) generating VCs
of the form Defs → φ (where φ is a universally quantified FO formula), (2) treating all
defined functions as largely uninterpreted, (3) instantiating definitions repeatedly only on
certain terms, and (4) dispatching them to an SMT solver that does quantifier-free decidable

1LH implements various algorithms including refinement inference. In this work, when we say LH, we
refer specifically to extrinsic-style full functional correctness proofs over user-defined functions using methods
proposed in [32].

2This is an inductive proof (induction on the size of the implicit call stack) that all functions satisfy their
contracts.

10

reasoning. This technique is certainly sound but clearly not a decision procedure: LH just
makes a fixed set of instantiations, which may be insufficient; Leon can continuously unfold
definitions and may proceed forever (timeout). Yet, despite the hardness results, this heuristic
works well in practice, giving predictable results though they may require users to find new
inductive lemmas and guidance in proofs!

Why does the heuristic of unfolding recursive definitions followed by quantifier-free reasoning
work so well in practice? In this chapter, we establish foundational results that this procedure
is in fact a complete procedure for the underlying combination of first-order theories. Our
results not only explain when this heuristic method works well, but also explains when and
why they fail, and the role of further help asked of the user.

The Standard Model vs Combined Theories

The answer to this question lies in the tension between the theory of the standard model
and the combined FO theory of the various sorts. First-order theorems that express properties
of functional programs can be seen as formulas over a combination of sorts, in particular
sorts that refer to ADTs (e.g. trees) and the base sorts (e.g. integers) that the datatypes
are built upon. When a verification engineer wishes to prove a theorem, they want it to be
proven for the fixed universe (the standard model) consisting of the various sorts. In this
universe, the ADT sort is the natural universe of algebraic terms of the appropriate type,
with constructors and destructors interpreted in the standard manner, and the integer sort
and functions over them (e.g. +) are interpreted in the standard manner.

Axiomatized Models In first-order logic, however, we often reason with models that
are axiomatized : we capture various properties of models using a finite or recursive set of
axioms, and reason over any model that satisfies the axioms. In particular, ADTs can be
axiomatized and the universe of integers with addition can be axiomatized. In fact, they
can be individually given complete axiomatizations— i.e., all models satisfying the axioms
satisfy the same first-order theorems as the standard model [34, 35, 36, 37, 38, 39]. There
may be other models, called nonstandard models, that are not isomorphic to the standard
model (in fact they always exist, say, by the Löwenheim-Skolem Theorem) but one cannot
distinguish them using a first-order formula. Nonstandard models are well-known in the
literature [36, 40].

Rogue Nonstandard Models that Disagree with the Standard Model However,
when we combine universes and their theories, interfacing them with uninterpreted functions,

11

the combined axioms are no longer powerful enough. More precisely, it is well known that the
combined axioms can admit rogue nonstandard models that disagree with standard models
on first order expressible theorems, and hence the theory entailed by the combined axioms
becomes weaker. Rogue nonstandard models are a special case of nonstandard models of the
combined theory that disagree with the standard model on some first-order formulas. For
example, if we take the complete axiomatization of ADTs and the complete axiomatization
of uninterpreted functions (congruence axioms) and combine them, the union of the axioms
admits rogue nonstandard models of ADTs that contradict theorems true in the standard
model of ADTs with uninterpreted functions.

Nonstandard models exist even for complete theories, but there are no rogue models in
such theories since, by the definition of completeness, all nonstandard models agree with
the standard model on all FO expressible theorems. Combined theories are incomplete as
there are rogue nonstandard models. However, quantifier-free formulas over combinations of
theories (using the Nelson-Oppen method) do not suffer from such issues, which is why we
can think of validity procedures for them as provers for the standard model.

Contributions The key insight behind our result is that the method of unfolding recursive
definitions and performing quantifier-free reasoning can always prove and only prove the
subset of theorems that are valid over the combined theory of ADTs and the background sorts.
Consequently, it cannot prove theorems that are valid in the standard model but invalid in a
rogue nonstandard model. We develop this insight to explain the unusual effectiveness of
unfolding recursive definitions into uninterpreted function applications via four contributions:

1. A FLUID Logic (Section 2.4) Our first contribution is the definition of a logic called
FLUID (First-order Logic for Universal properties under Inductive Definitions) that captures
the essence of definitions3 and VCs generated by LH4 and Leon. FLUID formulas are of
the form Defs → φ where Defs are provably terminating recursive definitions, and φ is a
universally quantified formula. Verification conditions for correctness of many functional
programs can be formulated using FLUID formulas; in fact, systems like LH and Leon

generate VCs that are in this logical fragment.

2. Completeness of Unfolding followed by Quantifier-Free Reasoning (UQFR)
(Section 2.5) UQFR is a technique for proving validity by modeling recursive functions

3LH and Leon also support higher-order functions, but such definitions are beyond the scope of this
chapter. We provide further discussion on higher-order functions in Chapter 7.

4In consultation with the developers of LH, we believe that FLUID captures all VCs generated by LH for
extrinsic style proofs using refinement reflection!

12

as uninterpreted functions, unfolding recursive definitions Defs systematically on a class
of ground terms, and reasoning with the resulting quantifier-free formulae using decision
procedures. Our second contribution is a foundational result that shows that UQFR is
a complete semi-decision procedure for the validity of FLUID formulas over the combined
first-order theory of ADTs and background sorts. Namely, UQFR guarantees to prove all
theorems that are valid in the combined FO theory. Consequently, when a theorem that is
valid over the standard model is not proven using this technique, we are guaranteed that
there is a rogue nonstandard model (satisfying the ADT and background theories) where the
theorem does not hold. The proof of completeness is nontrivial for two reasons. First, the
unfoldings of recursive definitions that UQFR uses (and tools such as LH and Leon use)
are thrifty ; they instantiate definitions of functions only on terms on which they are called,
and do not expand instantiations to terms that arise from the underlying axiomatizations of
theories. Second, every time a theorem that is valid on the standard model is not proven,
it is nontrivial to construct a rogue nonstandard model falsifying the theorem. The model
construction in the proof of this theorem crucially exploits the fact that FLUID definitions
are provably terminating.

3. Completeness in Practice (Sections 2.6 and 2.7) Thus, far from being a whimsical
heuristic that happens to work in practice, UQFR is rather a robust procedure whose
completeness may explain why this heuristic performs so predictably well. In particular, it
does not miss proving theorems that can be proved using pure FO reasoning of the underlying
axioms of the theories. Our third contribution shows how this bears out in practice. We
explain how LH performs FLUID verification using UQFR (Section 2.6). Crucially, when
theorems are not proved valid, we show it is because rogue nonstandard models exist, and
that the lemmas and induction hints provided by the user then serve to eliminate such models,
all while reasoning within the FLUID fragment. Next, we show how we can use a slightly
different FLUID formula to mimic Leon’s more sophisticated reasoning which additionally
assumes pre/post contracts for functions at each unfolding. Hence, our completeness result
also applies to explain the effectiveness of Leon (Section 2.7).

4. Limits of FLUID (Section 2.8) Our final contribution is a set of results that show
why our results on FLUID are unlikely to extend to more expressive logics. We show
though the validity problem for FLUID admits complete procedures, it is undecidable, hence
distinguishing it from several decidable fragments identified in the literature (e.g., [41]). We
also show that attempts to generalize FLUID, e.g. by allowing functions whose definitions
are required to be terminating (but not provably terminating using FO proofs) makes UQFR

13

not complete. This result also implies that replacing definitions with arbitrary universally
quantified formulas makes UQFR an incomplete procedure.

2.2 OVERVIEW

In this section we provide an overview of the key results in this chapter. We illustrate the
ideas via example programs over the datatype of lists over integers:

data List = Nil | Cons Int List

2.2.1 Insertion and Sortedness

Consider the following program that inserts an element into a (sorted) list. We define both
insert-ion and sorted-ness via recursive functions

sorted :: List → Bool

sorted Nil = True

sorted (Cons h Nil) = True

sorted (Cons h1 (Cons h2 tl)) = h1 ≤ h2 && sorted (Cons h2 tl)

insert :: List → Int → List

insert Nil k = Cons k Nil

insert (Cons x xs) k | x >= k = Cons k (Cons x xs)

| otherwise = Cons x (insert xs k)

Definitions We can encode the above Haskell programs in FOL where each function’s
definition introduces no new variables, instead using destructors (head , tail) and recognizers
(isNil , isCons) to simulate pattern matching. To ensure that destructors are applied sensibly,
we guard the use of terms of the form head(t) and tail(t) with the recognizer isCons(t).

∀x.List. sorted(x) = ite(isNil(x),True,

ite(isNil(tail(x)),True, head(x) ≤ head(tail(x)) ∧ sorted(tail(x))))

∀x : List, k : Int. insert(x, k) = ite(isNil(x),Cons(k,Nil),

ite(head(x) ≥ k,Cons(k, x),

Cons(head(x), insert(tail(x), k)))) (2.1)

where we treat sorted and insert as uninterpreted functions in the signature. We refer to
these formulae as the definitions of sorted and insert and denote them by defsorted and
definsert respectively.

14

Verification Conditions Let us consider the example of verifying that inserting an element
k into the empty list yields a sorted list. We state this formally as the following verification
condition (VC):

(defsorted ∧ definsert)→ sorted(insert(Nil , k)) (2.2)
Note that this VC is of the form DEF → φ, where DEF is a set of definitions (when it

appears in a formula we are referring to the conjunction of the formulas in the set) and φ is
quantifier-free, i.e., all variables are implicitly universally quantified. Informally, the VC says
that the property φ should hold assuming the set of definitions DEF . The FLUID fragment
we define (see Section 2.4) consists of such formulas.

Unfolding We prove the above VC valid by unfolding the definitions. For a term t, let
defsorted [t] denote the quantifier-free formula obtained by instantiating the quantified variable
x in defsorted with t. We refer to this as unfolding the definition of sorted on t. Similarly we
can define the unfolding insert [t]. To prove the VC valid we simply unfold definitions on
arguments that occur in φ, i.e., we attempt to prove

(definsert [(Nil , k)] ∧ defsorted [insert(Nil , k)])→ sorted(insert(Nil , k)) (2.3)

This formula can be dispatched using SMT solvers [11, 12] that use a combination of decision
procedures for ADTs and Integers. It is in fact valid because unfolding definsert on (Nil , k)

shows that insert(Nil , k) evaluates to Cons(k,Nil), and unfolding defsorted on Cons(k,Nil)

shows that sorted(insert(Nil , k)) evaluates to True.
We generalize this technique of Unfolding definitions followed by Quantifier-Free Reasoning

into an algorithm UQFR (Section 2.5), and argue that tools like Liquid Haskell (Sec-
tion 2.6) and Leon (Section 2.7) perform similar reasoning on such formulas.

2.2.2 Insertion Preserves Sortedness

Next, let us turn to a more interesting theorem, namely that insertion preserves sortedness.
Formally, we wish to prove the following contract for insertion:

∀x, k.sorted(x)→ sorted(insert(x, k)) (2.4)

The corresponding VC is:

VC simple ≡ (defsorted ∧ definsert)→ (sorted(x)→ sorted(insert(x, k))) (2.5)

Unlike the example in Section 2.2.1, it turns out that there is no set of terms such that
unfolding the definitions on these terms can prove the VC valid. Consequently, LH fails to
prove the theorem.

15

Using Contracts Tools like Leon not only unfold definitions but also use contracts for
terms generated during unfolding. For example, note that unfolding definsert on (x, k) yields
the term insert(tail(x), k). Then, the VC that Leon attempts to prove is not VC simple but
rather the following, which we call VCLeon:

(defsorted ∧ definsert)→
(
(x ̸= Nil → (sorted(tail(x))→ sorted(insert(tail(x), k))))

→ (sorted(x)→ sorted(insert(x, k)))
)

(2.6)

which additionally assumes the contract for insert(tail(x), k) (when x ̸= Nil). Observe that
this VC is also of the form DEF → φ and is therefore in the FLUID fragment. We show in
Section 2.7 that VCLeon can be obtained automatically from the original VC, i.e., VC simple .

We attempt to prove VCLeon using the same technique of unfolding definitions on arguments
appearing in the formula (UQFR). This succeeds, and one can verify that unfolding insert on
{(x, k), (tail(x), k)} and sorted on {x, tail(x), insert(x, k), insert(tail(x), k)} proves VCLeon

valid5. Observe that the unfolding strategy used in the examples we have seen is thrifty
in the sense that definitions are unfolded exactly on terms that occur as arguments to the
corresponding functions.

Using contracts is a more powerful approach. In general, there are theorems whose proofs
require even more instantiations of contracts on terms obtained during further unfoldings.
We show in Section 2.7 using a reduction that the use of multiple repeated instantiations
of definitions as well as contracts can also be viewed as proving FLUID fragment formulas
using UQFR. Consequently, our results apply not only to LH but also to tools like Leon.

2.2.3 Membership in a Sorted List

One prominent aspect of program verification in LH or Leon is proof by induction.
However, induction is not part of UQFR. In this section we discuss the example of checking
membership in a sorted list where all the above approaches fail, and explain the role of
induction (in the form of explicit user help) in these tools. We first define a function elems to
capture the set of elements stored in a list and a function mem that checks the membership
of an element in a sorted list.
∀x : List. elems(x) = ite(isNil(x), ∅, {head(x)} ∪ elems(tail(x)))

∀x : List, k : Int.mem(x, k) = ite(isNil(x),False, ite(k = head(x),True,

ite(k < head(x),False, mem(tail(x), k)))) (2.7)
5The reader may note here that we only argue the validity of VCLeon and not the original goal VC simple .

We discuss why validity of the former implies validity of the latter in Section 2.7.

16

We want to verify that mem precisely captures membership for sorted lists. Formally, the
contract is: sorted(x)→ (mem(x, k)↔ k ∈ elems(x))

However, the approaches discussed above do not work for this example. They do not
succeed even if the definitions are unfolded infinitely and contracts is assumed for all of the
infinitely many terms/tuples that occur in the unfoldings.

To see why this is the case, consider what happens when we replace the usual standard
model of ADTs and Integers we have in our minds with complete axiomatizations for each
of the sorts, along with congruence axioms for the function symbols elems and mem. In
this setting, the standard model is only one of the possible models and in general a model
of the axiomatized universes may not be identical to the standard model. Validity in the
axiomatized setting is an under-approximation to validity in the standard model, and as we
show in Section 2.3.3 it is in fact a strict under-approximation. There are theorems that
are true on the standard model that do not hold under axiomatization. This is because of
the presence of rogue nonstandard models where the property we want to prove is not true.
A rogue nonstandard model is a model that obeys the axioms but is not identical to the
standard model, and further, falsifies the desired theorem. Nonstandard models always exist
in the axiomatized setting, but they may satisfy all the same first-order properties as the
standard model using a first-order formula. However, rogue nonstandard models, when they
exist, can disagree with the standard model on a desired first-order theorem.

Our soundness and completeness results in Section 2.5 show that the proving power of
unfolding definitions and using contracts is precisely that of validity over the axiomatized
universe. Therefore, if there is a rogue nonstandard model that falsifies a property, then
unfolding based reasoning cannot prove it. Indeed, both LH and Leon fail on the above
example without extra help.

Rogue Nonstandard Model Let us look at the rogue nonstandard model where our
theorem does not hold. The universe U is: {s | s is a finite sequence of ints} ∪ {(s, i) |
s is an infinite sequence of ints, i is an int} The finite sequences correspond to ADT lists of
integers as we think of them but the infinite sequences are nonstandard elements6. Nil is
interpreted to be the empty sequence and Cons behaves as expected on standard elements
(prepending an element to a finite sequence). On the nonstandard elements Cons is defined
by Cons(j, (s, i)) = (j :: s, i+ 1) where j :: s denotes prepending j to the sequence s. head

and tail behave as inverses to Cons in the usual sense. One can check easily that this model
6The standard model of ADTs consists exactly of all terms. Nonstandard elements are elements in a

nonstandard model that do not correspond to any term. In particular, one cannot destruct them a finite
number of times to reach Nil . Nonstandard models always have such elements with “infinite tails”.

17

satisfies the usual axioms of ADTs [36, 37].
The meaning of sorted on this model is as expected: we define only elements with non-

decreasing sequences to be sorted. The definition of elems(x) is as follows

elems(x) =

{v | v is an element of x} for a standard element x

{v | v is an element of x} ∪ {−1} for a nonstandard element (x, i)
(2.8)

Lastly mem(x, k) holds if and only if k occurs in the longest non-decreasing prefix of the
sequence corresponding to x. If x is sorted, the longest non-decreasing prefix of x is x itself.

The above interpretations are consistent with the definitions. Consider the function for
elems, for example. On standard elements it is consistent with the definition because it
has the expected value. It is also consistent on nonstandard elements. Observe that for a
nonstandard element x, tail(x) is also a nonstandard element. Therefore, the inclusion of an
extraneous element −1 in the elems of both x and tail(x) is consistent with the recursion
elems(x) = {head(x)} ∪ elems(tail(x)).

Finally, we see this is a rogue nonstandard model as it does not satisfy the prop-
erty sorted(x) → (mem(x, k) ↔ k ∈ elems(x)). Consider the nonstandard element
x = ([0, 0, 0 . . .], 0). Note that x is sorted since it is a non-decreasing sequence, and elems(x) =

{0,−1} by the above construction. Hence −1 ∈ elems(x). However mem(x,−1) = False

since −1 does not occur in x.

Role of User Help To prove the above example in LH, one must provide additional
hints or inductive lemmas (whose proof of the induction step is itself performed using
unfolding/UQFR)7. We show in Section 2.6 that these lemmas eliminate rogue nonstandard
models like the one shown above, and therefore enable the VC to be proven using unfolding
techniques.

Rogue Nonstandard Models of Integers It is tempting to think that the above
difficulties can be avoided by stating a constraint that lists are finite, i.e., there must
exist a non-negative integer corresponding to the length. However, this does not work.
This is because there exist rogue nonstandard models of the integers containing elements
considered ‘non-negative’ by the model’s interpretation but do not correspond to an integer
(i.e., decrements do not reach 0). The lengths of infinite lists would be interpreted to such
nonstandard numbers, and we would still need user help.

7Leon is able to verify mem, but it does so using a heuristic for structural induction rather than
its primary algorithm of instantiating definitions and contracts. There are other examples involving list
reversal where Leon also requires lemmas to deal with rogue nonstandard models that fail the theorem (see
Section 2.7).

18

2.3 PRELIMINARIES

In this section we define the general setting of multi-sorted first-order logic over algebraic
datatypes (ADTs) and other base types with recursively defined functions. We define FLUID,
our logic of study, as a fragment of this logic in Section 2.4.

2.3.1 Syntax and Semantics

The logic we work with is defined over a finite set of disjoint nonempty sorts S. We
distinguish certain sorts among these as foreground sorts. The foreground sorts support
a signature of Algebraic Datatypes (ADTs) which we describe below. The other sorts are
referred to as background sorts (background sorts could also consist of ADTs).

An ADT signature for a sort σ consists of a finite set of function symbols ctori, 1 ≤ i ≤ m

called constructors. Each constructor has an arity ri ≥ 0 and a signature σ1×σ2×. . .×σri → σ,
where σj, σ ∈ S. Corresponding to each constructor with the above signature, we also have
ri many destructors dtor ij with signature σ → σj for 1 ≤ j ≤ ri, and recognizers is_ctor i
with signature σ → Bool .

For example, the algebraic datatype of lists over natural numbers ListNat is defined by the
nullary constructor nil : ListNat and the binary constructor Cons : Nat×ListNat → ListNat ,
with destructors are head : ListNat → Nat and tail : ListNat → ListNat . The recognizer
is_cons identifies elements that correspond to non-nil lists. Note that standard pattern
matching idioms for ADTs used in functional programs can be expressed using this vocabulary.

We can also define hierarchical datatypes (e.g., lists of lists of integers), mutually recursive
datatypes (e.g., terms corresponding to a context-free grammar), as well as sum (unions)
and product types (tuples). We cannot define co-inductive datatypes such as infinite lists in
our logic. However, we do not lose generality with respect to the various tools we study; for
example, LH’s termination checker precludes the creation of values like infinite lists.

Our logics have signatures of the form Σ = (S,F ,D), where:

• S is a finite non-empty set of sorts as defined above with a partitioning of sorts into a
set of foreground ADT sorts and a set of background sorts. We require that there is at
least one foreground sort.

• F is a set of constant, function, and relation symbols over the sorts S. These will
be used to model symbols over the sorts that models give interpretations to. These
include functions like integer addition or set union, and constructors, destructors, and
recognizers over ADT sorts.

19

• D is a set of function symbols distinct from F that will be used to model functions
that have definitions.

The syntax is standard multi-sorted first-order logic over sorts S and over symbols F ∪ D.
We make two modifications. First, we require that every occurrence of a destructor term
dtor ij(t) is guarded by the corresponding recognizer is_ctor i(t) to ensure that destructor
terms are well-defined. We do not lose generality as any formula with well-defined destructor
terms can be rewritten to an equivalent one with the appropriate guards. In practice, tools
check that is_ctor i(t) holds by generating a separate Verification Condition. Second, we
allow ite (if−then−else) expressions over terms and formulas. The semantics of our formulas
is the standard one for FOL. We refer the reader to a standard reference text [42] for the
notion of first-order logic, first-order models, syntax, and semantics. Semantics is defined in
terms of models (aka structures) that give interpretation to all symbols, including those in D.
We use the notation M |= φ to denote that a sentence φ evaluates to true in a model M ,
and φ |= ψ to denote semantic entailment (all models satisfying φ also satisfy ψ).

Inductive Definitions Intuitively, a definition of D (for D ∈ D) gives a particular
interpretation for D. The definition of a function D ∈ D of arity r is a quantified formula
defD of the form

∀x1, x2, . . . , xr. D(x1, x2, . . . , xr) = ρ(x1, x2, . . . , xr) (2.9)
where ρ is a quantifier-free formula over x1 through xr called the body of the definition. Of
course, the body may use other inductively defined symbols G ∈ D. We require that every
function in D has exactly one definition.

In order to obtain well-defined definitions, we demand a notion of termination. We define
this notion using the standard model of our logic, which we introduce in the next section.

2.3.2 The Standard Model

The intended standard interpretation of an ADT signature is the initial term algebra where
the universe consists of terms that respect the sorts and the interpretation of constructors is
that of term application, i.e., JctoriK(e1, . . . , eri) = ctori(e1, . . . , eri).

The destructors are interpreted as Jdtor ijK(ctor i(e1, . . . , eri)) = ej and is otherwise in-
terpreted to be identity on other elements 8. Finally, recognizers are only true on terms
constructed with the corresponding constructor: Jis_ctor iK(ctor i(e1, e2, . . . eri)) = True, and
is False for other elements.

8Since we consider only formulas that are guarded to check elements to be of the right sort before applying
destructors, the semantics of the formula on other elements is irrelevant.

20

More generally, our logic is parameterized by a standard model MS,F of the foreground
and background sorts. This is typically true of sorts employed in program verification: ADTs,
integers, sets, etc. Note that this model does not give interpretations to functions in D.

We require that inductive definitions are terminating on the standard model using a
standard eager semantics [43]. Informally, we evaluate a definition on concrete elements over
the standard model as follows: (i) we evaluate recursively defined function terms by evaluating
the definition on the arguments; (ii) for ite expressions, we evaluate the conditions first and
then only evaluate the appropriate branch; (iii) for all other expressions, we first evaluate
all recursively defined function terms (with subterms evaluated before their superterms)
and then evaluate the expression. A terminating definition is one for which this procedure
terminates on all inputs.

The following proposition states that overMS,F , there exists a unique valuation for the
defined functions D that is consistent with their definition.

Proposition 2.1. Given (S,F ,D) let DEF = {defD | D ∈ D} be a set of definitions. There
exists a unique modelMS,F ,D such that the interpretation of symbols in F coincides with
MS,F and interpretations of symbols in D satisfy their definitions, i.e.,MS,F ,D |= defD for
every D ∈ D.

Functional programs can be modeled using the definitions (we only consider terminating
programs, of course). Universal FO properties φ of functional programs can be modeled as
validity of formulas of the form DEF → φ, where we use DEF to mean the conjunction of
formulas in the set of definitions DEF = {defD | d ∈ D}.

However, as discussed in Section 2.1 it is easy to show that the problem of validity of even
quantifier-free formulas on MS,F ,D is not recursively enumerable.

Proposition 2.2 (Incompleteness Theorem for the Standard Model). There exists a sort σ
with an ADT signature F and defined functions D such that checkingM{σ},F ,D |= φ is not
recursively enumerable for quantifier-free φ.

Note that validity over ADTs without background sorts and definitions is decidable [35]
since it has a complete axiomatization [36]. The introduction of definitions (programs) is
what leads to incompleteness.

2.3.3 Combinations of Theories, Nonstandard models, and Rogue Nonstandard Models

A primary observation we make in this chapter is that techniques for reasoning based on
function unfolding and quantifier-free reasoning (as in Liquid Haskell and Leon) do not

21

reason with the standard model but rather with a certain combination of first-order theories.
We will show this in Section 2.5.2. In this section we introduce notation for combined theories.

A theory T for a signature is an entailment closed set of first-order sentences. A modelM
satisfies a theory T , denotedM |= T , if every sentence in the theory holds in the model. A
sentence ψ is valid in T , denoted T |= ψ if ψ belongs to T .

A theory tuple for (S,F ,D) is:

• The first-order theory of ADTs Tσ for each foreground sort σ. This is the precisely the
theory of the standard ADT model for σ, which may involve functions over other sorts
using which the elements of σ are to be constructed. These other sorts are themselves
constrained by theories like Presburger Arithmetic, or an ADT theory.

• A theory Tbg for the combined signature of the background sorts that is recursively
enumerable. We require the background sorts in the standard model to satisfy this
theory. In practice, this theory is the union of several axiomatized theories, say for
arrays, integers, bitvectors, etc.

• Theory of uninterpreted functions with equality for symbols in D.

The combined theory Tcomb of a theory tuple is the entailment closure of the union of
the theories in the tuple. A model satisfies a theory tuple (and consequently the combined
theory) if the projection of the model to each subset of sorts satisfies the theories constraining
those sorts. The combined theory Tcomb is the set of all FO sentences that hold in all these
models. For example, consider the ADT ListNat of lists over natural numbers introduced
earlier. A theory tuple for this signature could be one that has (a) the theory of ADT lists
for the foreground sort, and (b) the theory of Presburger Arithmetic (natural numbers with
addition) for the background sort. The combined theory is the entailment closure of the
union of the two theories.

Note that the first order theory of ADTs is complete. Therefore, the above setting is agnostic
to the choice of any complete axiomatization for the ADT sorts! [36, 38]. Consequently, our
results are also quite general and agnostic to the choice of axiomatization.

The standard models for each sort satisfy their respective theories. The other models of the
individual theories are called nonstandard models. The standard modelMS,F ,D is a model of
Tcomb , and other models of Tcomb are nonstandard models for the combined theory.

Since the standard model is a model of Tcomb , it is clearly the case that Tcomb is a subset of
the theory of the standard modelMS,F ,D, which we denote by Tstd . However, the reverse is
not true in general, and in fact the combined theory can be strictly smaller than the theory

22

of the standard model. For example, consider the above example of ListNat where we extend
the logic with the predicate symbol R with the following recursive definition:

R(x) = ite(is_nil(x),False,

ite(is_nil(tail(x)), head(x) = 1,

head(x) = head(tail(x)) ∧R(tail(x)))) (2.10)

One would expect that R(x) holds only for nonempty lists x whose elements are all 1. Indeed,
the statement R(x)→ head(x) = 1 is valid on the standard model. However, this sentence
is not valid in the combined theory as there is a rogue nonstandard model that falsifies it.
In this work, we define a rogue nonstandard model as a nonstandard model that falsifies a
theorem of interest which is valid on the standard model.

An example of a rogue nonstandard model falsifying R(x) → head(x) = 1 is as follows.
It has an element u in the ADT universe that does not correspond to any standard (i.e.,
finite) ADT term such that R(u) is true and head(u) = 2. Destructing u consecutively would
proceed forever without reaching nil and and all these elements will satisfy R and have their
head element to be 2, hence satisfying the recursive equation for R. We had discussed other
such examples of rogue nonstandard models in Section 2.2.

Standard and nonstandard models satisfy the same FO properties for ADTs, but the
addition of recursively defined functions destroys this. Although the combination of ADTs
and recursively defined functions is the primary technical hurdle, we develop completeness
results for a theory that also includes background sorts. This is crucial to verify functional
programs as they invariably involve background theories.

In this chapter we work with a notion of validity under the combination of theories Tcomb .
We will also henceforth use the extended signature (S,F ,D, Tcomb).

2.3.4 Validity under Defined Functions

Let DEF be a set of definitions defD for each D ∈ D. We define the validity of a first-order
formula φ under definitions DEF by considering pairs of the form (DEF , φ).

Definition 2.1 (Validity of FOL Formulae with Defined Functions). Given (S,F ,D) with
definitions DEF of functions in D, we say that a formula φ is T -valid under the definitions
iff DEF → φ is T -valid, i.e., is in T . Note that we are using DEF in the formula to mean
the conjunction of definitions in that set. We denote this by T |= (DEF , φ).

We can utilize the above notion in the case of the theory of the standard model or the

23

combined theories, writing Tstd |= (DEF , φ) or Tcomb |= (DEF , φ) respectively. As before, if
Tcomb |= (DEF , φ) then Tstd |= (DEF , φ).

2.4 A FLUID LOGIC

In this section we define our first main contribution: the FLUID (First-Order Logic of
Universal properties under Inductive Definitions) fragment that captures VCs generated by
tools like LH and Leon. The heart of the FLUID fragment is a class of inductive definitions
called provably acyclic definitions.

Recall that we require definitions to terminate on the standard model. We demand in
the FLUID fragment that definitions also satisfy a provable acyclicity condition, which is a
notion similar to termination. Intuitively, acyclicity means that when definitions are unrolled,
there is no cyclic dependency between the recursive calls. Note terminating functions must
be acyclic, but acyclic definitions can be non-terminating. For example, the function forever

on Lists defined by forever(x) = forever(Cons(0, x)) does not terminate, but it is acyclic
because the recursive calls do not repeat. We demand in the FLUID fragment that the
acyclicity property expressed as a first-order formula is provable for the recursive definitions9.
We formulate provable acyclicity below using ranking functions and path conditions, which
we first define formally.

An ordered sort S ∈ S is one with a binary predicate < such that < forms a strict partial
order. Formally, < must satisfy the FO axioms expressing irreflexivity and transitivity
under Tcomb . Note that < need not be well-founded because we only require acyclicity, not
termination10. ADT sorts are ordered with respect to the (strict) subterm relationship.

For a recursively defined function D ∈ D, a ranking function for D is a recursively defined
function RankD ∈ D from the domain of D to an ordered sort. We require D is stratified. The
stratum of a function D ∈ D is a natural number denoted by strat(D). Note that multiple
functions can have the same strata. We require that every D ∈ D with strat(D) > 0 has a
ranking function RankD whose stratum is strictly lower than D. When strat(D) = 0, we
require that D is unary over an ordered sort, and its ranking function is the identity function.
Finally, we require that the definition of a function at stratum i can only call functions of
strata lower than or equal to i.

We now define path conditions, and then the notion of provable acyclicity.
9A subtle point here is that even though terminating functions are acyclic, they need not be provably

acyclic (see the discussion at the end of this section for an example). Therefore, termination and provable
acyclicity are incomparable.

10Well-foundedness is not expressible in FOL anyway.

24

Definition 2.2 (Path Condition). Given a formula ρ11, we denote by Pathρ(ψ,E) that the
sub-expression (subterm or subformula) E occurs in ρ with path condition ψ. It is the least
relation satisfying the following recurrence:

Pathρ(True, ρ) holds

If Pathρ(ψ, ite(cond , E1, E2)) then Pathρ(ψ, cond)

If Pathρ(ψ, ite(cond , E1, E2)) then Pathρ(ψ ∧ cond , E1)

If Pathρ(ψ, ite(cond , E1, E2)) then Pathρ(ψ ∧ ¬cond , E2)

If Pathρ(ψ,D(E1 . . . , En)) for D ∈ D then Pathρ(ψ,Ej), 1 ≤ j ≤ n

If Pathρ(ψ,⊕(E1 . . . , En)) for ⊕ ≠ ite,⊕ /∈ D then Pathρ(ψ,Ej), 1 ≤ j ≤ n

Informally, the path condition is the conjunction of all the conditions of ite expressions
that must be satisfied in order to “reach” the given sub-expression.

Definition 2.3 (Provably Acyclic Definitions). Given a signature with combined theory
Tcomb and stratified definitions DEF , a definition defD ≡ ∀x.D(x) = ρ(x) is provably acyclic
if for every G(t) (G ∈ D) occurring in ρ with strat(G) = strat(D), RankG and RankD have
the same range sort, and furthermore, for every ψ such that Pathρ(ψ,G(t))):

Tcomb |=

(∧
strat(H)<strat(D)

defH

)
→
(
ψ → RankG(t) < RankD(x)

)
where the overloaded symbol < represents an order predicate in the corresponding sort.

Informally, the above definition says that the arguments to recursive calls must be provably
(w.r.t Tcomb) smaller than the input arguments as measured using ranking functions. Although
we say ‘provable’, note that the definition uses semantic entailment (|=). However, these
two notions are the same since FOL is complete. Provable acyclicity ensures that when a
definition is unrolled, there is no cyclic dependency between recursive calls as the arguments
will always decrease. We can use the definitions of functions in lower strata and the path
condition to the recursive call to establish this property. We give an example below.

Example 2.1 (Sorted List Merge). Consider the usual function merge(x, y) for merging
sorted lists. Let its stratum be 1, with its ranking function being the sum of lengths of x and
y. The stratum of the length function length is 0.

Consider the recursive call merge(tail(x), y). The path condition in this case is x ̸=
Nil ∧ y ≠ Nil ∧ head(x) < head(y). We can show that this call has smaller rank, i.e.,
(length(tail(x)) + length(y)) < (length(x) + length(y)) using the definition of length and the

11ρ is usually the body of a recursively defined function

25

path condition (x ≠ Nil ensures that the term tail(x) is well-defined). We can show similarly
that the other recursive call has smaller arguments, and therefore merge is provably acyclic.

We can also show that length is provably acyclic. Since its stratum is 0, its ranking
function must be identity, therefore we have to show that the arguments to recursive calls
must themselves decrease. This is evidently true since length(x) recurses on tail(x), which is
smaller according to the ADT subterm ordering.

Aside We note here some subtleties in the definition of provable acyclicity. First, the
relation < is a mathematical one, and does not need to be part of the signature or logically
defined. Consequently, Definition 2.3 can be established by a user/system in any way. For
example, if < denotes the subterm ordering on ADT Lists, then a system can trivially
deduce that tail(x) < x. In particular, a definition that recurses on destructions of the called
arguments is immediately provably acyclic. Second, ADTs are an ordered sort regardless
of the choice of axiomatization because the subterm relation is an order in any model that
satisfies a complete axiomatization of ADTs, including nonstandard models (even rogue
ones). Therefore, we do not need ADT signatures/axiomatizations with an explicit subterm
predicate [38]. Third, observe that ranks need not be well-founded as we only require
acyclicity, not termination. Contrary to the usual ranking functions in literature, ranks need
not be lower-bounded. For example, the function forever defined above is provably acyclic
because we can say Rank(Cons(0, x)) < Rank(x) with the rank being negative of the length,
which has no lower bound.

Our fragment is very general and includes most definitions we know that tools use. In
practice, provable acyclicity is satisfied when functional programs are proved terminating.
This is because, to the best of our knowledge, every tool that proves functional programs
terminating uses ranking functions that map arguments to a well-founded order (typically
tuples of natural numbers, often associated with the size of ADTs), and shows that (1) the
ranking function decreases (according to some order relation <) on recursive calls, and
(2) the order < on which the ranking function decreases is well-founded. Condition (1) is
precisely the property in Definition 2.3!

Intuitively, provable acyclicity generalizes the idea of proving termination. Termination
makes sense on a standard model, but in a nonstandard model ADT elements can have “infinite
tails” and therefore a function that terminates on the standard model can be nonterminating
on a nonstandard model12. In contrast, provable acyclicity makes sense on all models,
standard and nonstandard. We show that in any Tcomb model, provably acyclic definitions

12Here we mean nonterminating in the sense that the evaluation procedure described in Section 2.3.2 does
not terminate for all inputs drawn from the nonstandard model.

26

are always satisfiable (though they may not have a unique interpretation). Formally (see
Corollary 2.1 in Section 2.5.2 for a proof):

Theorem 2.1. Given a signature (S,F ,D, Tcomb), a set of stratified definitions DEF that
are provably acyclic, and a modelM of Tcomb, there exists a modelM′ of Tcomb such that
the interpretation of symbols in F coincides with M and interpretations of symbols in D
satisfy their definitions.

We now define the FLUID fragment.

Definition 2.4 (FLUID Fragment). Given a signature (S,F ,D, Tcomb) and a set of stratified
definitions DEF for the symbols in D, the pair (DEF , φ) is in the FLUID fragment if (1)
every definition in DEF is provably acyclic, and (2) φ is purely universally quantified.

Discussion on Provable Acyclicity vs. Termination Termination refers only to
termination on the standard model. In contrast, provable acyclicity requires that arguments
do not repeat when unfolding a definition (on any model), which is established using an order
predicate and ranking functions. However, neither one implies the other.

For example, the function f(x) = f(cons(0, x)) is a provably acyclic function since the
arguments to the function will never repeat across successive recursive calls. However, f does
not terminate on the standard model: it simply keeps calling itself on larger and larger lists.

In contrast, the following predicate g is terminating on the standard model but is not
provably acyclic:

∀x. std(x) = ite(x = Nil ,True, std(tail(x)))

∀x. g(x) = ite(std(x),True, g(x)) (2.11)

std always terminates on the standard model returning True: it continually destructs
the element and recursively calls itself until it reaches Nil , at which point it returns True.
Therefore, g(x) also terminates for elements in the standard model as one would simply
evaluate the outermost condition (which terminates), and then take the branch corresponding
to the success of the condition (which is just True).

However, g is not provably acyclic: it recursively calls g(x) which does not decrease the
argument. We can’t use the fact we used in the termination argument that the else branch
will never be taken because for provability we have to consider all models, not just the
standard model. There are models where std does not always evaluate to True.

In Section 2.8 we use the fact that std cannot be proved to always evaluate to True to
show incompleteness of UQFR when provably acyclic functions are replaced by terminating
functions (see Theorem 2.6).

27

2.5 COMPLETENESS OF DEFINITION UNFOLDING AND QUANTIFIER-FREE
REASONING

In this section we describe the algorithm UQFR, based on Unfolding definitions followed
by Quantifier-Free Reasoning, for checking validity of universal properties. We show that
the algorithm intrinsically only proves theorems in the combined theory Tcomb. We then
prove our main technical result: the algorithm is complete for Tcomb . Let us fix a signature
(S,F ,D, Tcomb) through this section. Recall that Tcomb represents the combined theory for
the foreground and background sorts, with D being uninterpreted. Fix also the theory of the
standard model Tstd .

We require for our algorithm that Tcomb-validity is decidable for quantifier-free formulas,
and that the quantifier-free fragments of Tcomb and Tstd are identical. We are agnostic to
the choice or presence of an axiomatization for the theories and have no other constraints
on Tcomb. This assumption is satisfied for several combined theories, including those that
admit Nelson-Oppen combination [30, 44] e.g. ADTs, linear arithmetic, reals, etc. In fact,
such theories also admit efficient decision procedures as evidenced by SMT solvers [11, 12].
Checking validity is achieved by negating and checking for unsatisfiability. Note that the
quantified theories Tstd and Tcomb are however typically different; see Section 2.3.3.

2.5.1 UQFR Algorithm

The high-level picture of the algorithm is as follows: presented with a set of definitions
DEF and a quantifier-free formula φ, UQFR systematically unfolds the definitions on terms
on which functions are applied and dispatches the resulting quantifier-free formulas to a
decision procedure for satisfiability. We first provide some definitions that are useful in
describing the algorithm.

Definition 2.5 (D-Application). A D-application is a pair (D, t) where D ∈ D and t =

(t1, t2 . . . , tr) is a tuple of a terms such that D(t) is well-formed, i.e., D has signature
σ1 × σ2 . . . × σr → σ and ti is of type σi for 1 ≤ i ≤ r. A D-application (D, t) occurs in a
formula ψ if D(t) occurs in ψ.

Definition 2.6 (Definition Unfolding). Let φ ≡ ∀x1.∀x2. . . .∀xn. ψ be a universally quan-
tified formula such that ψ is quantifier free. The instantiation of φ with a tuple of terms
t ≡ (u1, u2, . . . un), written φ[t], is the quantifier-free formula ψ[u1/x1, . . . un/xn].

Given a set of C of D-applications and a set DEF = {defD | D ∈ D} of definitions we
denote DEF [C] = {defD[t] | (D, t) ∈ C}. Informally, DEF [C] is the set of quantifier-free
formulas corresponding to unfoldings of functions D on arguments t given by C.

28

Input: (DEF , φ) such that φ is universally quantified, with DEF = {defD | D ∈ D}
Output: VALID (when it terminates)
Imports: QFreeSAT for deciding Tstd -satisfiability of quantifier-free formulas

1: procedure UQFR[S;F ;D; Tstd]
2: formulas := {¬φ} // Negate the formula and check for satisfiability
3: while True do
4: res := QFreeSAT(formulas) // Check sat of ¬φ with current unfoldings
5: if res = UNSAT then
6: return VALID // (DEF , φ) is valid
7: else
8: // Compute D-applications occurring in formulas
9: D_applications := {(D, t) | D(t) occurs in ψ for ψ ∈ formulas}

10: // Unfold the definitions and add them to formulas
11: formulas := formulas ∪ DEF [D_applications]

Algorithm 2.1: Algorithm for Unfolding Definitions followed by Quantifier-Free Reasoning

Algorithm Description Algorithm 2.1 shows the pseudocode for the UQFR, parame-
terized by the signature (S,F ,D, Tstd) with the theory of the standard model. It takes as
input a set of definitions DEF = {defD | D ∈ D} and a formula φ such that φ is universally
quantified. UQFR attempts to prove validity by establishing unsatisfiability of the negation
DEF ∧ ¬φ (see Definition 2.1 to see that these are equivalent). Finally, UQFR also assumes
access to an external procedure QFreeSAT that checks the satisfiability of quantifier-free
formulas with respect to the theory of the standard model Tstd . It takes as input a set of
formulas and outputs SAT if the conjunction of the formulas is Tstd -satisfiable and UNSAT

otherwise.
The algorithm maintains a set formulas of quantifier-free formulas consisting of ¬φ along

with finitely many unfoldings of the definitions. If this set is unsatisfiable then the formula
∧DEF ∧ ¬φ is unsatisfiable as well, i.e., φ is valid under DEF . Initially the set contains
only ¬φ. Since φ is purely universal, we treat ¬φ as a quantifier-free formula by adding the
existentially quantified variables as new ground terms (constants) in our signature.

At a general point in the algorithm (line 3), we check the Tstd -satisfiability of formulas

using the external procedure QFreeSAT (line 4). Note that although there is a unique
valuation for every D ∈ D on the standard model consistent with DEF , the set formulas

only enforces this consistency for finitely many unfoldings of DEF and otherwise treats the
symbols in D as uninterpreted, which is an over-approximation. If formulas is unsatisfiable we
exit and return VALID . Otherwise, we refine our approximation by unfolding the definitions
on more terms. We compute the set of D-application terms occurring in formulas (line 9),
add the corresponding unfoldings of definitions to formulas (line 11), and go back to the

29

beginning of the loop. Observe that if the algorithm is not able to prove the unsatisfiability
of ¬φ using any amount of unfoldings then it does not terminate.

2.5.2 Soundness and Completeness of UQFR under Combined Theories

In this section we prove the primary contribution of this work, namely that UQFR is
complete for Tcomb-validity of FLUID formulas. We first show the soundness of UQFR.

Theorem 2.2 (Soundness of UQFR w.r.t Tcomb). If UQFR(S;F ;D; Tstd) terminates on
(DEF , φ) then Tcomb |= (DEF , φ).

Proof. In each round of the algorithm the set formulas is of the form DEF [C] ∪ {¬φ},
where DEF [C] contains unfoldings (i.e., instantiations) of DEF on a set C of D-applications.
Therefore, if UQFR terminates then DEF [C] ∧ ¬φ is unsatisfiable with respect to Tstd
(line 4).

Now, QFreeSAT can also be seen as a satisfiability procedure for the combined theory
Tcomb since the input formulas are quantifier-free. We hence have that DEF [C] ∧ ¬φ is
unsatisfiable with respect to Tcomb, which yields DEF ∧ ¬φ is unsatisfiable with respect to
Tcomb , i.e., Tcomb |= (DEF , φ). QED.

We showed in Section 2.3.3 that typically Tstd is strictly larger than Tcomb . The above result
shows that the proving power of UQFR is in fact bounded by Tcomb . Therefore, not only are
there valid theorems in Tstd that are not valid in Tcomb, but it is also the case that UQFR

(and hence systems such as LH and Leon) will never be able to prove those theorems.

We now show that UQFR is complete.

Theorem 2.3 (Completeness of UQFR w.r.t Tcomb for FLUID). If (DEF , φ) belongs to
the FLUID fragment (Definition 2.4) and Tcomb |= (DEF , φ), then UQFR(S;F ;D; Tstd)
terminates on (DEF , φ) and reports it valid.

We dedicate the rest of this section to the proof of the completeness theorem.

Prologue: Theorem Simplification and Reduction to Model Construction

We make some simplifications for ease of presentation. First, we assume that DEF has
only one stratum. We provide a generalization of the argument made here to multiple strata
at the end of this section. Second, we assume without loss of generality that the signature
(S,F ,D, Tcomb) is such that if a formula Γ is satisfiable in a Tcomb model, then it is satisfiable

30

in a Herbrand model consisting of the terms occurring in Γ and closed under the applications
of functions in F ∪ D. This can always be done by Skolemizing Tcomb and expanding F with
new function symbols.

We first rewrite the statement of the theorem to an equivalent one. Consider the value of
the sets formulas and D_applications through the algorithm:

formulas0 = {¬φ} (initial value)

D_applications i = {(D, t) | D(t) occurs in ψ ∈ formulas i−1} (i > 0)

formulas i = formulas i−1 ∪ DEF [D_applications i] (i > 0)

where the subscript i denotes their values in the ith round of the outermost loop on line 3.
Observe that formulas i ⊆ formulasj and D_applications i ⊆ D_applicationsj for every j > i.
The completeness result can then be stated as follows:

Theorem 2.4 (Completeness of UQFR w.r.t Tcomb). If Tcomb |= (DEF , φ) then formulas i is
Tcomb-unsatisfiable for some i ≥ 0.

Note that the above theorem implies that UQFR is complete for Tcomb-validity because
if for some i we have that formulas i is Tcomb-unsatisfiable, then it is also Tstd -unsatisfiable,
therefore the algorithm will terminate in round i. By the soundness theorem (Theorem 2.5.2),
(DEF , φ) is Tcomb-valid.

We show the contrapositive of the above statement. Let us assume that formulas i is
Tcomb-satisfiable for every i ∈ N. We show that DEF ∧ ¬φ is Tcomb-satisfiable. Specifically,
we construct a Tcomb model N such that N |= DEF ∧ ¬φ.

Proof Plan We construct N in two stages:

1. We first use the assumption that formulas i is Tcomb-satisfiable for every i ∈ N to
construct a model M (using compactness) that satisfies

⋃
i≥1

DEF [D_applications i]

and ¬φ. Note that this model need not satisfy DEF everywhere (as we have only
instantiated definitions for a subset of terms).

2. In this stage we take the model M and consider a finite set K of pairs of the form
(D, t) such that the interpretation of D inM does not satisfy the definition of D on
t. We show that we can ‘repair’ the model so that definition of D now holds on t for
every (D, t) ∈ K. We then show that definitions can be repaired everywhere using a
compactness argument. This results in the model N we seek.

31

Stage 1: Model of Infinite Instantiations

We recall the compactness theorem for FOL under combinations of theories.

Proposition 2.3 (FOL Compactness with Theories). Given a signature (S,F ,D, Tcomb), a
set of formulas Γ (finite or infinite) is Tcomb-satisfiable if and only if every finite subset of Γ is
Tcomb-satisfiable.

From our assumption we know that formulas i is Tcomb-satisfiable for every i. Using
compactness and the fact that formulas i form an increasing sequence w.r.t ⊆, it follows
that the infinite set Inf =

⋃
i∈N

formulas i is Tcomb-satisfiable. We rewrite this as Inf =

{¬φ} ∪
⋃
i≥1

DEF [D_applications i].

LetM be a Tcomb-model that satisfies Inf . From our simplifying assumptions, we can assume
that M is a Herbrand model. It satisfies ¬φ and satisfies the definitions only on certain
tuples, namely for (D, t) ∈

⋃
i≥1

D_applications i.

Note here that if the modelM happened to be the standard model the repair we wish to do
would be trivial as defD is uniquely defined (see Proposition 2.1) for each D ∈ D and we can
simply ‘complete’ the model with the correct valuations. However,M can be a nonstandard
model, and this results in the nontrivial aspects of our construction below.

Stage 2: Computational Closure and Model Repair

The reason we can repairM is because the set
⋃
i≥1

D_applications i has a special property:

it is computationally closed. We define this property below.

Definition 2.7 (Computationally Closed Set). Let Γ be a set of quantifier-free formulas.
A set C of D-applications is said to be computationally closed with respect to Γ if: (1) if
D(t) occurs in some formula in Γ then (D, t) ∈ C, and (2) if (D, t1) ∈ C and a D-application
(G, t2) occurs in defD[t1] then (G, t2) ∈ C.

Intuitively, for a recursively defined function D, the computational closure of a term D(t)

contains all the recursive calls (at any level) made by a call to D on t, where we represent a
recursive call to a function G on a term r by the D-application (G, r). The set is called a
computational closure because it is the set of calls that occur when ‘computing’ the value of
D on t symbolically. The computational closure of a formula is then the union of the compu-
tational closures of all terms of the form D(t) occurring in the formula. For example, consider
the length function length on Lists. The computational closure of length(Cons(1,Nil)) is the

32

set {(length,Cons(1,Nil)), (length,Nil)}. Similarly, the computational closure of length(x)
is {(length, x), (length, tail(x)), (length, tail(tail(x))), . . .}.

Using the above definition we can see that
⋃
i≥1

D_applications i is computationally closed

for ¬φ. We now show that we can repair definitions everywhere on a Herbrand model if the
definitions are already satisfied on a computationally closed sub-universe. Using this result,
we can repairM so that definitions are satisfied everywhere, which is what we want.

Lemma 2.1 (Finite Repair outside Computational Closure). LetM be a Herbrand model,
Γ a set of quantifier-free formulae, C a computationally closed set for Γ, and K a finite set of
D-applications not in C. Let M satisfy DEF [C] ∪ Γ. Then there exists a model M′ that
satisfies DEF [K] ∪ DEF [C] ∪ Γ.

Proof. Observe that if K is singleton, say {(D, t)}, we can constructM′ by simply ‘updating’
the interpretation of D on t according to the definition. Formally, the model M[D(t) :=

Jρ(t)KM] satisfies DEF [{(D, t)}] ∧ DEF [C] ∧ Γ. Here M[(D, t) := v] denotes an updated
model whose interpretation of D(t) is v but is otherwise identical toM. We also use J·KM to
denote the interpretation ofM. The correctness of this construction follows from the fact
that the definitions over C are satisfied despite the update since C is computationally closed.
Consequently the satisfaction of Γ is also unaffected because if G(r) occurs in Γ then (G, r)

belongs to C.

To show that DEF [K] is satisfiable for an arbitrary finite subset K, we takeM and apply
updates as above on each pair in K. However, we have to do this carefully so that each repair
does not break any previous repairs. Fix a set K ′ and a modelM′ such that K ′ ⊆ K and
M′ isM with updated with the fixes for the elements in K ′. Initially K ′ = K andM′ =M.
We describe below a mechanism Minimal(K,K ′,M′) to choose a ‘minimal’ element in K

that has not been fixed yet, and repair it as described above.
Minimal(K,K ′,M′) is as follows:

1. Pick an arbitrary element (D, t) ∈ (K \K ′). Let the body of defD be ρ.

2. We evaluate ρ(t) on M′ in the following way: subterms must be evaluated before
superterms, and for conditionals we evaluate the condition first and then only evaluate
the appropriate branch.

3. If the evaluation as described above does not encounter any element in K \K ′, then
return (D, t).

4. If the evaluation of ρ(t) encounters a term G(r) such that (G, r) ∈ (K \K ′), we recurse,
going back to Step (2) and evaluating τ(r) where τ is the body of defG.

33

Informally, this mechanism has the flavor of an eager evaluation, in that we evaluate ρ(t)
eagerly, following the evaluation procedure down (recursively) to a minimal unfixed D-
application in K.

Finally, when the procedure returns an element (H, u), we add it to K ′ and updateM′

with the repair for (H, u). We then repeat this process of picking a minimal element and
repairing the model on it until all elements in K are fixed. This completes our construction,
and the modelM′ obtained at the end of all the fixes is the model we desire.

A subtle point in the construction is the termination of Repair(K,K ′,M′) as the choice
of minimal element is not well-defined otherwise. If the mechanism does not terminate, it
must be because the evaluation of some D(t) encounters itself. However, this is impossible as
definitions are provably acyclic (Definition 2.3). Formally, we have the following proposition:

Proposition 2.4. Let (D, t) be a D-application in K, ρ be the body of the definition of
D, and M be a model of Tcomb. Let (G, r) be a D-application such that G(r) is a sub-
expression of ρ(t) and the evaluation of ρ(t) inM as performed in the Repair mechanism
above encounters G(r). Further, let ψ be the path condition of the sub-expression G(r) that
is reached (see Definition 2.2). Then, we have thatM |= ψ.

We skip the proof of this proposition as it follows trivially from the description of the
evaluation mechanism and Definition 2.2. Now, from the definition of provable acyclicity
(Definition 2.3), we know:

Tcomb |=

(∧
strat(H)<strat(D)

defH

)
→ ψ → RankG(r) < RankD(t)

Per our assumption we have only one stratum, so the set {H}H∈D,strat(H)<strat(D) is empty.
SinceM is a Tcomb model that satisfies ψ, we obtainM |= RankG(r) < RankD(t). Therefore,
if updating D(t) requires updating G(r), then the rank of G(r) is smaller. Therefore, each
recursive call of Repair is made on a smaller element of K, and therefore the evaluation
of D(t) cannot depend on itself. The mechanism for picking a minimal element is indeed
well-defined and we can produce at the end of the procedure a model M′ that satisfies
DEF [K] ∪ DEF [C] ∪ Γ.

End of proof of Lemma 2.1. QED.

Repair for All Tuples

We now show that we can repair definitions everywhere, i.e., on arbitrarily large sets of
D-applications. We first show some easy results. For a sort σ, consider the set Uσ consisting

34

of all terms of type σ. Then, the set DApp of all possible D-applications is:

DApp = {(D, (t1, t2, . . . tr)) | D ∈ D, D has signature σ1 × σ2 . . . σr → σ, ti ∈ Uσi
}

Note that any D-application (D, t) must belong to DApp, and in particular any computa-
tionally closed set C, which is a set of D-applications, must be a subset of DApp.

Finally, if N is a Herbrand model of Tcomb, then its universe for a sort σ is precisely Uσ.
Therefore, satisfying definitions everywhere on N simply amounts to satisfying definitions on
DApp. The following proposition captures this idea:

Proposition 2.5 (Definitions on a Herbrand Model). Let N be a Herbrand model of Tcomb .
Then, N |= DEF if and only if N |= DEF [DApp]

We now show the correctness of repairing arbitrarily large sets of D-applications outside a
computational closure.

Lemma 2.2 (Definition Completion Lemma). Let DEF be a set of definitions with only one
stratum. Let C be a set that is computationally closed with respect to a set of quantifier-free
formulas Γ. If DEF [C] ∧ Γ is Tcomb-satisfiable, then DEF ∧ Γ is Tcomb-satisfiable.

The proof is the same as the one given in the main text, but we repeat it here.

Proof. We claim that DEF [DApp] ∪ Γ is Tcomb-satisfiable. Since C ⊆ DApp, let us rewrite
this as DEF [C] ∪ DEF [C] ∪ Γ, where C = DApp \ C is the complement of C.

We have from the statement of the theorem that DEF [C] ∪ Γ is satisfiable. Therefore, to
show satisfiability of our desired set by compactness, it is sufficient to show that DEF [C]∪Γ∪B
is satisfiable for an arbitrary finite subset B of DEF [C].

Observe that a finite subset of DEF [C] is of the form DEF [K] for a finite set K ∈ DApp.
We are now done, since we know that DEF [C] ∪ Γ ∪ DEF [K] is satisfiable from Lemma 2.1.

Finally, consider a model N such that N |= DEF [DApp]∪Γ. Without loss of generality, we
can assume thatN is a Herbrand model. Applying Proposition 2.5 gives us thatN |= DEF∪Γ,
which concludes the proof. End of proof of Lemma 2.2. QED.

Epilogue: Generalizing Model Repair to Stratified Definitions

In the above proof we assumed that DEF had only one stratum. For the case of multiple
strata, we first begin with the modelM of Inf given to us by Stage 1. We then induct on
the stratum number i, with the inductive hypothesis being that definitions for functions from

35

strata < i are satisfied everywhere. This hypothesis is true for the base case of the lowest
stratum i = 0 by Lemma 2.1.

Inductively, we assume the hypothesis and then repair the model on definitions in the
current strata by applying Lemma 2.2. The arguments for the correctness of repair in this
case are identical, i.e., we show the correctness of finite repair and then apply compactness.

However, there is a subtlety involved in showing the correctness of finite repair. The
arguments are the same as in the proof of Lemma 2.1, with one exception. When we consider

the argument for decreasing ranks, we needed the conjunct

(∧
strat(H)<strat(D)

defH

)
to be valid.

When there is only one stratum, this is trivial since the conjunct is empty. For a general
stratum i in our induction proof, the formula demands that the definitions corresponding
to defined functions from lower strata are satisfied everywhere. But this is precisely the
induction hypothesis! This concludes the proof of correctness of repair for a stratified set of
definitions. QED.

As a corollary, we obtain the following result which captures the intuition behind the
definition of provable acyclicity:

Corollary 2.1 (Repetition of Theorem 2.1). Given a signature (S,F ,D, Tcomb), a set of
stratified definitions DEF that are provably acyclic, and a modelM of Tcomb, there exists
a model M′ of Tcomb such that the interpretation of symbols in F coincides with M and
interpretations of symbols in D satisfy their definitions.

Proof. We simply apply the arguments of the definition completion lemma (Lemma 2.2)
toM for each stratum of the definitions starting with the lowest, setting the set C where
definitions are already satisfied as well as the set of formulas Γ to be empty. We can show
by induction that when we apply the lemma at stratum i, the resulting model will satisfy
definitions at strata ≤ i everywhere. End of proof of Corollary 2.1. QED.

2.6 FLUID REASONING IN LIQUID HASKELL

Next, let us see how the Liquid Haskell verifier (LH) employs a particular instance
of FLUID reasoning referred to by the tool as reflection and proof by logical evaluation
(PLE). We show how a user might use LH to develop a small library of theorems about
Peano numbers to illustrate why it can be viewed as FLUID reasoning, why its FLUID-style
instantiation heuristics are effective in practice, and, perhaps more importantly, why extra
information is really required from the user when instantiation fails.

36

Peano Addition Consider the definition of Peano numbers

data Peano = Z | S Peano

As described in Section 2.3.1, Liquid Haskell uses the above definition to generate an
ADT Peano with (1) two constructors Z and S , (2) two recognizers isZ and isS , and (3) a
single destructor pred . Next, consider the following function that recursively defines addition

plus :: Peano → Peano → Peano

plus Z m = m

plus (S n) m = S (plus n m)

LH generates a definition for plus which is an “axiom” constraining plus [32]

defplus ≡ ∀n,m. plus(n,m) = ite(isZ (n), m, S (plus(pred(n),m)) (2.12)

2.6.1 Proof by Instantiation

Propositions as Types Suppose we wish to verify that the addition of Z is an identity
function, i.e. the proposition ∀n : Peano. plus(Z , n) = n. In LH, a user uses the recipe of
“Propositions as Types” to specify the property as a type, and verify it via a function zeroL

that inhabits the type:

zeroL :: n:Peano → { plus Z n == n }

zeroL n = ()

In the above type signature, the input parameter has the effect of quantifying over all n, and
the output post-condition stipulates the particular property that must hold for each n [45].

Programs as Proofs To check this proof, LH generates a VC defplus → ∀n.plus(Z , n) = n.
Next, it uses logical evaluation (PLE) [32] to instantiate the definition of plus (2.12) at (Z , n)
to get the instantiated VC ∀n. defplus [Z , n]→ plus(Z , n) = n using the instantiation

defplus [Z , n] ≡ (plus(Z , n) = ite(isZ (Z), n, S (plus(pred(Z), n)) (2.13)
The SMT solver proves the above instantiated VC is valid even when plus is uninterpreted,
thereby verifying that plus Z is an identity function.

2.6.2 Proof by Induction

LH makes no attempt to automate inductive proofs. Instead, the programmer must
explicate induction via recursion, by writing programs where the induction hypothesis is
made explicit in the VC via the asserted post-conditions of recursive calls to smaller inputs.

37

Constructor Destructor Plus
I(S)(i) = i+ 1 I(pred)(i) = n− 1 if 0 < n I(plus)(i, j) = i+ j
I(S)(i′) = (i+ 1)′ I(pred)(i′) = (i− 1)′ I(plus)(i′, j′) = (i+ j)′

I(Z) = 0 I(plus)(i′, j) = (i+ j + 1)′

I(plus)(i, j′) = (i+ j)′

Figure 2.1: Rogue Nonstandard Model for Peano over the universe U ≡ {0, 1, 2, . . .} ∪
{. . . ,−2′,−1′, 0′, 1′, 2′, . . .}. comprising the naturals and a primed version of each integer. The
model provides an interpretation for various constructors, destructors and plus that respects
the ADT axioms, but where plus has a nonstandard interpretation on nonstandard ADT
elements i′: I(plus)(i′,Z) = (i+ 1)′ ̸= i′, refuting (2.15) , and I(plus)(i′, j) ̸= I(plus)(j, i′),
refuting (2.14).

As an example, suppose that we wish to verify that the definition of plus is commutative. As
before, the programmer would start by specifying the above proposition as the type shown
at the top of Figure 2.2, and might attempt a direct proof comm n m = ()13 that would yield
the FLUID VC

defplus → (∀n,m. plus(n,m) = plus(m,n)) (2.14)

Sadly, PLE does not find any suitable instantiations, and so the SMT solver cannot prove
the above is valid when plus is uninterpreted and hence rejects the code on the left.

Rogue Nonstandard Model Did LH simply give up too early — maybe some carefully
chosen instantiations would produce a valid instantiated VC? Surprisingly, this is not the
case. In fact, verification fails because (2.14) is refuted by a rogue nonstandard model
(Figure 2.1) where the interpretation for the constructors and destructors respects the ADT
axioms for Peano and plus satisfies its definition, but there exists an element i′ such that
plus(i′,Z) ̸= plus(Z , i′) in the model. Let us banish such rogue models by proving that
adding Z on the right is also an identity,

∀n : Peano. plus(n,Z) = n (2.15)

A direct proof of 2.15 is doomed: it yields the VC below which is refuted by the model in
Figure 2.1:

defplus → ∀n. plus(n,Z) = n (2.16)
13() is a “unit proof” with no extra hints from the user. LH attempts to prove the VC directly given a

unit proof.

38

An Inductive Proof The programmer must spell out an inductive proof as a (recursive)
piece of code that yields a VC which excludes rogue nonstandard models by explicitly stating
the induction hypothesis as an antecedent in the VC. This is achieved via the proof zeroR
shown on the left in Figure 2.2. First, we split cases (via a pattern match) on the first
argument, treating separately the cases where the argument is Z or S n. Second, the recursive
call to zeroR n puts the post-condition of zeroR for the smaller input n as a hypothesis for
the new VC

defplus → (∀n. plus(Z ,Z) = Z ∧ plus(n,Z) = n→ plus(S (n),Z) = S (n)) (2.17)

PLE instantiates defplus (2.12) at (Z ,Z) and (S (n),Z) to get the instantiated VC
defplus [Z ,Z]→ defplus [S (n),Z]→ (plus(Z ,Z) = Z ∧ plus(n,Z) = n→ plus(S (n),Z) = S (n))

(2.18)

The instantiated VC is valid even when plus is uninterpreted, thus proving (2.15). In essence,
the (well-founded) recursive call to zeroR establishes the induction hypothesis for the smaller
n, thereby eliminating the rogue nonstandard models, letting us verify the proposition for
any Peano n.

2.6.3 Proof by Lemmas

Next, let us see how to use auxiliary lemmas like zeroR to eliminate rogue nonstandard
models that thwarted the direct proof of the commutativity of plus. First, the programmer
might attempt an inductive proof (like the zeroR) as shown in the middle in Figure 2.2: split
cases on whether the first parameter is Z or S n. In the base case, they would call zeroR m

to eliminate the rogue nonstandard model where plus(i′, 0) ̸= plus(0, i′) (Figure 2.1). In the
inductive case, they would recursively invoke the induction hypothesis via recursively calling
comm n m. This time, LH generates the VC

defplus → (∀n,m. (plus(m,Z) = m→ plus(Z ,m) = plus(m,Z))

∧ (plus(n,m) = plus(m,n)→ plus(S (n),m) = plus(m, S (n)))) (2.19)

Thanks to the equality asserted by the use of the “lemma” zeroR m, the first conjunct
can proved valid via the instantiation plus [(m,Z)]. However, the second conjunct is invalid
despite the recursive (inductive) call to comm n m because of a different rogue nonstandard
model for plus that falsifies the second conjunct!

Rogue Nonstandard Model for comm Attempt 1 The following is a rogue nonstandard
model for the Peano numbers over the same ADT universe as the model in Figure 2.1 and a

39

different interpretation of plus that refutes the second conjunct of (2.19).

I(plus)(i, j) = i+ j I(plus)(i′, j′) = (i+ j + 1)′ if 0 ≤ j

I(plus)(i, j′) = (i+ j)′ I(plus)(i′, j′) = (i+ j − 1)′ otherwise
I(plus)(i′, j) = (i+ j)′

(2.20)

The reader should take a moment to check that the above definition respects defplus . However,
even though the induction hypothesis trivially holds at I(plus)(−1′,−1′) (as the arguments
are the same), I(plus)(0′,−1′) = −2′ which differs from I(plus)(−1′, 0′) = 0′!

Proof of comm Attempt 2 The peculiar property of the rogue nonstandard model
from attempt 1 is that it introduces a discontinuity at 0′ that violates Again ∀n,m :

Peano. plus(n,S (m)) = S (plus(n,m)). We separately specify and inductively prove this
property via a lemma succR:

succR :: n:Peano → m:Peano → { plus n (S m) = S (plus n m) }

The proof of succR is similar to zeroR:

succR :: n:Peano → m:Peano → { plus n (S m) = S (plus n m) }

succR Z _ = ()

succR (S n) m = succR n m

Now, we can use both helper lemmas zeroR and succR to eliminate the rogue nonstandard
models that thwarted our previous attempts, by the proof shown on the right in Figure 2.2.
First, we replace the body of comm Z m with comm z m = zeroR m which add the post-condition
of zeroR as a lemma. Second, we strengthen the body of comm (S n) m with a call succR n m.
Together, these lemmas yield a VC with the strengthened antecedents that preclude the
above rogue nonstandard models

defplus → (∀n,m. (plus(m,Z) = m→ plus(Z ,m) = plus(m,Z))

∧ (plus(n,m) = plus(m,n)→ plus(m, S (n)) = S (plus(m,n))→

plus(S (n),m) = plus(m, S (n)))) (2.21)

This time, PLE instantiates defplus at (Z ,m) and (S (n),m) to yield an instantiated VC that
the SMT solver validates even when plus is uninterpreted. Note that as with induction, LH

makes no attempt to automate the creation and use of such lemmas: the programmer must
explicitly spell them out by defining and proving them, and then “calling” the lemmas inside
the theorem body to appropriately “instantiate” them at the relevant values, thereby yielding
a VC that can be automatically discharged by FLUID reasoning.

40

-- Succeeds
zeroR :: n:_ →

{plus n Z == n}

zeroR Z = ()
zeroR (S n) = zeroR

n

-- Fails
comm :: n:_ → m:_ →

{plus n m == plus m
n}

comm Z m = zeroR m
comm (S n) m = comm n

m

-- Succeeds
comm :: n:_ → m:_ →

{plus n m == plus m n}

comm Z m = zeroR m
comm (S n) m = comm n m

&& succR m n

Figure 2.2: Proof of the commutativity of Peano addition: The explicit case-splitting,
recursion and “lemma application” are needed to eliminate rogue nonstandard models.

get :: Map k v → k → Maybe
v

get (Node k v l r) key
| key == k = Just v
| key < k = get l key
| otherwise = get r key

get Leaf _ = Nothing

set :: Map k v → k → v → Map k v
set (Node k v l r) key val
| key == k = Node key val l r
| key < k = Node k v (set l key val)

r
| otherwise = Node k v l (set r key

val)
set Leaf k v = Node k v Leaf Leaf

Figure 2.3: Implementations of get and set functions for Binary Search Tree.

2.6.4 Rogue Nonstandard Models in Proofs about Data Structures

We use the simple Peano datatype to illustrate how LH implements FLUID reasoning, and
how direct proofs can fail due to rogue nonstandard models which can be eliminated via
explicit induction (recursion) and lemmas (function calls). Similar phenomena occur when
verifying more complicated properties. Consider the datatype of finite maps from keys (k) to
values (v)

data Map k v = Leaf | Node k v (Map k v) (Map k v)

Figure 2.3 shows the code for two functions that respectively get the value of a key from a
tree, and set the value of a key to some new val leaving the values of all other keys unchanged.
The following proposition is one of McCarthy’s two laws that characterize finite maps

∀m, k, v. get(set(m, k, v), k) = Just(v)

Attempt 1: Direct Proof In LH, we could try to specify and verify the above law as

getEq :: m:_ → k:_ → v:_ → { get (set m k v) k = Just v }

getEq m k v = ()

41

which would yield the VC (defget ∧ defset)→ ∀m, k, v. get(set(m, k, v), k) = Just(v) Unfor-
tunately, no (finite) instantiation can prove the above VC, and we describe here an intuitive
rogue nonstandard model that falsifies the theorem.

Rogue Nonstandard Model Let the universe U be the set of finite trees and infinite non-
regular trees14 over (k, v) pairs. The interpretation for get(m, k) on a tree m follows the usual
path in a binary search tree to find k, even on infinite trees. If the k is found, get returns
the corresponding value, and if the path ends or continues forever, then get returns Nothing.
The interpretation for set is similar, except that on an infinite computation it returns the
input tree.

To see why this model refutes the VC, consider the infinite binary tree m that is infinite
on all paths, and every node of which has key 0 and value 0. Let us call set, to set key 1

to the value 1 and try to get the value of key 1 after that, i.e. consider get(set(m, 1, 1), 1)

By the above interpretation set(m, 1, 1) = m, as all paths in m are infinite, and further
get(m, 1) = Nothing thereby refuting the proposition despite being a model of the ADT
theory and the definitions of get and set. Intuitively, set loses the update entirely, and hence
get returns Nothing.

Attempt 2: Inductive Proof We cannot prove the law directly. Instead, we need an
inductive proof as in Figure 2.2.

getEq (Node key _ l r) k v

| k == key = ()

| k < key = getEq l k v

| otherwise = getEq r k v

getEq Leaf _ _ = ()

The successful proof splits cases on constructor for m and then on the ordering of the two
keys, and recursively invokes getEq (i.e. applies the induction hypothesis) on the left and
right subtrees appropriately. The induction hypotheses in the antecedents of the VC for the
above, as in zeroR eliminates the rogue nonstandard models, and allows PLE to find suitable
instantiations such that the resulting instantiated VC can be validated by the SMT solver.

2.7 FLUID REASONING AND REASONING IN LEON

The Leon system and its successor Stainless [26] reason with functional programs [33, 41,
46] using techniques broadly similar to LH and UQFR. Leon reasons about Scala programs

14A non-regular tree is one that is not isomorphic to any of its proper subtrees. This is a technical condition
we require to ensure that the ADTs are acyclic, i.e., it is not possible to reach a term by destructing itself.

42

with quantifier-free pre/post conditions, and the recursively defined functions occurring in
annotations are written in Scala as terminating functions. It also automates certain induction
proofs, including induction by “stack-height” (akin to Hoare-style reasoning), as well as
structural induction on ADTs. Leon caters to other aspects of development as well, including
techniques similar to bounded model-checking for finding errors. We do not discuss these
aspects here as they are not relevant to our work.

The first observation is that verification conditions for Leon programs can also be modeled
as (DEF , φ) in the FLUID fragment. Specifically, the property φ is quantifier-free (implicitly
universally quantified) and definitions are proven terminating.

While reasoning in Leon also involves unfolding definitions followed by SMT solving, there
are important differences in comparison to LH or UQFR. First, whereas LH typically unfolds
definitions only once, Leon continually unfolds definitions over multiple rounds similar to
UQFR. Second, Leon asserts the contract of a function along with its definition on the given
input arguments during the unfolding. In theory, it does so for every unfolding, ad infinitum.
Observe that when expressing a problem as (DEF , φ), contracts cannot be assumed for all
subsequent function calls, as that would require universally quantified assumptions. Assuming
contracts for subsequent function calls is also strictly more powerful than simply unfolding
definitions, as we illustrated in Section 2.2.2.

Reduction to UQFR and Completeness for Leon We show that the reasoning mecha-
nism in Leon can in fact be captured in the FLUID framework and proven using UQFR. More
formally, given a pair (DEF , φ) in the FLUID fragment with contracts {(preD, postD)}D∈D

for the functions, we construct an effectively computable instance (DEF ′, φ′) in the FLUID
fragment such that running UQFR on (DEF ′, φ′) mimics assuming the contracts in addition
to unfolding definitions. The key idea is to construct, for every D ∈ D, an additional
recursively defined predicate ContractD with the same input signature that returns a Boolean
value indicating whether the pre/post condition holds for the input parameters as well as
all recursive calls D makes in the computation on these parameters. We then check validity
of verification conditions that further assume that the immediate calls to other functions
D have ContractD evaluate to true. UQFR applied on this formula mimics the procedure
that Leon does and Theorem 2.3 argues the completeness with respect to the underlying
combined theory.

We assume for simplicity an ADT universe with two destructors d1 and d2 that map to
the ADT sort and other destructors that map to background sorts, and a single nullary
constructor Nil . We also assume that there is only one recursively defined function f that
takes arguments (x, y) where x is of an ADT sort. Let the ADT sort have a single nullary

43

constructor Nil . Without loss of generality, let us also suppose that the definition of f
on arguments (x, y) has two recursive calls with the arguments being (d1(x), t1(x, y)) and
(d2(x), t2(x, y)) where t1 and t2 are tuples of terms over x, y. This definition is in the FLUID
fragment, i.e., provably acyclic as the first parameter decreases in the subterm ordering on
the ADT sort. Finally, let us assume a postcondition postf(x, y, ρ) for f , where x of type
ADT and y are the input parameters for f and ρ is a variable denoting the return value of f
on (x, y). We assume that there is no precondition for ease of exposition.

Let φ be a property that we want to prove. The VC is then DEF → φ where DEF

contains the definition of f . Without loss of generality, let f occur in φ as the term f(z, w).
In order to model Leon’s procedure, when proving φ valid we need to be able to assume that
postf(x, y, f(x, y)) holds on arguments obtained by unfolding the definition of f on (z, w)

arbitrarily many times.
Let us define a new recursive predicate Contract(x, y) with input parameters identical to

f and the following definition:

∀x. Contract(x, y) = (postf (x, y, f(x, y))∧(
x ̸= Nil → (Contract(d1(x), t1(x, y)) ∧ Contract(d2(x)), t2(x, y))

))
(2.22)

The above declares Contract(x, y) to be true iff f satisfies its contract on the input x, y
and further, if x is not Nil , Contract also holds for the recursive calls (d1(x), t1(x, y)) and
(d2(x), t2(x, y)) that occur in the definition of f . Therefore, asserting Contract(x, y) can be
seen as asserting that the contract of f holds for (x, y) as well as all the tuples that occur
when unfolding the definition of f on (x, y) ad infinitum, i.e., the computational closure of
(x, y) (see Section 2.5.2).

Finally, in order to simulate Leon-style reasoning we want to assert contracts for all tuples
occurring in the unfolding of f(z, w) (but not the contract for the arguments themselves).
We do this by explicitly asserting Contract for the ‘first level’ of terms in the unfolding of f
and adding Contract to the DEF :

DEF ′ →
((
z ̸= Nil → Contract(d1(z), t1(z, w)) ∧ Contract(d2(z), t2(z, w))

)
→ φ

)
(2.23)

where DEF ′ is the union of DEF and the definition for Contract as above. As argued earlier,
given the definition of Contract , asserting Contract on the first level tuples amounts to
asserting the contract for all tuples that occur in the unfolding of f(z, w).

Observe that the new VC is also in the FLUID fragment. Furthermore, when we unfold def-

44

initions, unfolding the definition of Contract naturally leads to assuming (in the instantiated
quantifier-free formula) that postf holds on the arguments that occur when unfolding the
definition of f on (z, w). Hence applying UQFR to the above constructed formula essentially
simulates the procedure that Leon performs. It is easy to see that the above construction can
be generalized to multiple ADT sorts with different signatures as well as multiple mutually
recursively defined functions with their respective contracts.

As far as we know the above result is new. Prior literature on Leon [33, 41, 46] shows
soundness of the procedure. Restricted fragments [41] involving certain kinds of “measures”
(functions from ADTs to background sorts) have been shown to admit complete unfolding
based reasoning with respect to the standard model, with a decidable validity problem. In
contrast, we show completeness (i.e., recursively enumerable procedures) for validity with
respect to the combined theory for a more general class of functions. Further, our logic is
undecidable (see Section 2.8), which shows that it is fundamentally different from decidable
subclasses reported in prior art [41] (see also Chapter 6).

Our results also show that when theorems are not provable in Leon, there ought to be
rogue nonstandard models. We considered a few such examples and were indeed able to
construct rogue nonstandard models. For example, Leon fails to prove rev(rev(x)) = x

automatically, where rev reverses a list. It has a rogue nonstandard model that is eliminated
by an inductive lemma provided by the user.

2.8 EXPRESSIVENESS RESULTS ON THE FLUID FRAGMENT

We show some technical results pertaining to the FLUID fragment.

Undecidability of the FLUID Fragment We show undecidability of the FLUID fragment
even when the combined theory admits decision procedures for quantifier-free reasoning. In
other words, the validity problem for the FLUID fragment, for which we proved UQFR is a
semi-decision procedure in Section 2.5.2, does not admit any decision procedures.

Theorem 2.5. The validity problem for FLUID formulas is undecidable.

We provide a reduction from the non-halting problem for two-counter machines. A two-
counter machine [47] is a machine with two registers that can contain unbounded integers.
The machine can only increment or decrement these counters, or check whether they are
equal to zero. Two-counter machines are computationally equivalent to Turing machines [47],
and checking the halting/non-halting of a two-counter machine is undecidable (assuming,
without loss of generality, an initial configuration where counters are set to zero).

45

It is tempting to try to find a simple reduction that encodes executions of the machine
using ADTs (say, as lists of configurations), defining a recursive predicate that identifies
halting executions (which are finite), and stating the theorem that no ADT element encodes
a halting execution of the machine. However, note that we are seeking validity with respect
to the combined theory and not validity in the standard model. In fact, since validity over
the combined theory is recursively enumerable, we cannot reduce non-halting problem of
two counter machines (which is co-r.e. hard) to it. Our reduction reduces the non-halting
problem to the complement of validity, i.e., satisfiability. We provide the proof below.

Proof. Let us fix a two-counter machine M . Let us consider ADTs that are lists of triples of
integers: ADT List, with two constructors Nil and Cons:

data List = Nil | Cons (state : Int) (fst : Int) (snd : Int) (tail

: List)

Each element of the list represents a configuration of a two-counter machine– the state
of the two-counter machine and the value of the two counters. We can write quantifier-free
logical formulae init(x) representing the initial configuration, halt(x) representing any halting
configuration, and nextconfig(x, y) representing that y is the successor configuration of x.
Now consider the following recursive definition defnonhalt:

∀x : List. nonhalt(x) = ite(x = Nil ,False,

ite(halt(x),False

nextconfig(x, tail(x)) ∧ nonhalt(tail(x))

Note that this function recurses on tail(x), which is a strict syntactic subterm of x. Thus
its definition meets the requirement of the FLUID fragment.

Consider the following property to prove valid under the above definition:

φ ≡ ∀x.(init(x)→ ¬ nonhalt(x))

We claim defnonhalt → φ is valid in the combined theory if and only if the two-counter
machine halts.

If the formula is not valid, then there is a model and an ADT element x such that init(x)
and nonhalt(x) hold. Then there are two cases: x corresponds to a finite list (reaching Nil
in finitely many destructions) or it is a nonstandard element corresponding to an infinite
list. The former case is impossible, as no finite list can have nonhalt to be true on it. In the
second case, the recursive definition of nonhalt ensures that the list pointed to by x encodes
an execution of the two-counter machine, and hence the machine does not halt.

46

Conversely, assume the machine does not halt. It turns out that we can build a nonstandard
model where x points to a nonstandard ADT element encoding an infinite list that corresponds
to the non-halting execution of the machine. Formally, we use the compactness theorem
instead of constructing this model explicitly. Note that for any k ∈ N, there is a standard
ADT element that encodes a finite list corresponding to a partial execution of the two-counter
machine for k steps. Hence any unfolding of the definition of nonhalt on x, tail(x), etc. up
to k destructions is satisfiable. By the compactness theorem, the unfolding for ω number of
steps is also satisfiable. One can now see that nonhalt(x) will hold in this model. QED.

Incompleteness with Terminating Definitions It is natural to ask whether UQFR is
complete for all terminating functions, not just provably acyclic ones. We show that this is
not the case.

Theorem 2.6. There exists a signature (S,F ,D, Tcomb), a set DEF of well-defined definitions
for D that are not provably acyclic, and a universally quantified formula φ such that
Tcomb |= (DEF , φ) but UQFR does not terminate.

Note that the above result implies that generalizing definitions to arbitrary universally
quantified formulas also leads to incompleteness.

Proof. We construct an instance of the validity problem without provably acyclic definitions
that is unprovable for UQFR. We use the ADT of lists over integers as our foreground sort:

data List = Nil | Cons (head : Int) (tail : List)

as well as the following definitions:
defstd ≡ ∀x : List. std(x) = ite(x = Nil ,True, std(tail(x)))

defR ≡ ∀x : List. R(x) = ite(std(x),True, ite(head(x) = 0, R(x),¬R(x)))
Both functions are well-defined definitions as they terminate on the standard model. The
termination of std is apparent: it simply destructs the input term recursively until Nil and
then returns True. R is also terminating on the standard model since std(x) is always true
on standard elements, therefore the else branch of the outer ite is never taken.
std is also provably acyclic since the arguments to the recursive call are smaller according

to the subterm ordering. However, R is not provably acyclic. We demonstrate this indirectly
by proving the incompleteness of UQFR and defer the discussion of why it is not provably
acyclic.

Consider the theorem φ ≡ ∀y : List. R(y). We claim: (1) Tcomb |= DEF → φ, and (2)
UQFR does not terminate on (DEF , φ). We do not prove the latter here as it can be deduced
easily by following Algorithm 2.1 and only show the former.

47

Suppose the claim is not true. Note that the antecedent is not vacuous since it is possible
to satisfy the definitions on the standard model. Therefore, for the claim to be false there
must exist a model where the definitions are satisfied, but there is a y such that R(y)
does not hold. From the definition of R, we know that this is only possible when ¬std(x)
and head(x) = 0. Any other path in the definition either leads to R(x) being true or the
impossibility R(x) = ¬R(x). Now, consider the element Cons(1, y). From the definition of
std , we have std(Cons(1, y)) = std(y) = False. Then, following the definition of R yields
R(Cons(1, y)) = ¬R(Cons(1, y)), which is impossible. Therefore, it must be the case that
there is no model where the definitions are satisfied but φ does not hold. In other words,
Tcomb |= (DEF , φ).

UQFR never terminates on the algorithm because unfolding the definitions only ever
produce terms that are destructions of y, whereas we proved the validity above by instantiating
the definitions on a superterm of y. This shows that UQFR is incomplete for this instance.

QED.

Since we prove completeness for provably acyclic definitions, the above shows that R is not
provably acyclic. More specifically, this is because in order to prove that the absurd recursive
call ¬R(x) is unreachable, we must essentially prove that std(x) always holds. However, this
not true in the combined theory, and one would typically use induction to establish this.

Consequently, in models where std(y) does not hold for some y, R is in fact unrealizable as
the element Cons(1, y) cannot be given a valuation that is consistent with the definition of
R. This does not happen with provably acyclic definitions because such functions can always
be given a valuation consistent with their definitions on any model (see Theorem 2.1).

The completeness of UQFR arises from the fact that unfolding the (provably acyclic)
definition of some R (R ∈ D) on x amounts to a simulation of the “computation” of R(x)
in any model. Without provable acyclicity, we have shown that it is possible to construct
well-defined definitions that are unrealizable in some models, rendering UQFR incomplete.

48

Chapter 3: Model-Guided Synthesis of Inductive Lemmas for FO+lfp

In the previous chapter we formally identified creativity gaps in automated verification
techniques for recursive programs over algebraic datatypes. Our technical results studied
completeness of unfolding for first-order logics with recursive definitions over algebraic
datatypes, and as a result characterized the role of user-provided inductive lemmas as
bridging the gap between models of combined theories and the standard model. Earlier
related work [27] studied the completeness of a UQFR-like heuristic for first-order logics
with recursive definitions over uninterpreted sorts. These logics are typically used to model
verification of heap-manipulating programs. This work showed similarly that inductive
lemmas bridge the gap between the combined theories and a class of standard models (defined
by least fixpoints over the uninterpreted sorts). In this chapter, we undertake a novel approach
for synthesizing inductive lemmas to prove validity in this logic. The idea is to utilize several
kinds of finite first-order models as counterexamples that capture the non-provability and
invalidity of formulas to guide the search for inductive hypotheses. We implement our
procedures and evaluate them extensively over theorems involving heap data structures that
require inductive proofs and demonstrate the effectiveness of our methodology.

3.1 INTRODUCTION

One of the key revolutions that has spurred program verification is automated reasoning
of logics. Particularly, in deductive verification, engineers write inductive invariants that
punctuate recursive loops and contracts for methods and then use logical analysis to reason
with verification conditions that correspond to correctness of small, loop-free snippets. In
this realm, automatic reasoning in combinations of quantifier-free theories using SMT solvers
has been particularly useful; in turn, these tools are based on the logics having a decidable
validity (and satisfiability) problem [12, 28].

However, reasoning even with loop-free snippets of programs is challenging when the code
manipulates linked data structures embedded in pointer-based heaps. Data structures are
finite but unbounded structures that are often characterized using recursive definitions whose
semantics are defined using both quantifiers and least fixpoints.

First-order logic with least fixpoint definitions (FO+lfp) which accesses various background
sorts or theories (e.g., integers and sets) is a powerful extension of FOL that can define data

The material in this chapter is reproduced from the publication cited as [15] co-authored by the author
of this thesis, with minor changes.

49

structures and express their properties. For example, fairly expressive dialects of separation
logic have been translated to FO+lfp in order to aid automated reasoning [27, 48, 49, 50].
We focus here on automated reasoning for first-order logics with least fixpoint definitions or
recursive definitions that utilize SMT solvers for quantifier-free reasoning.

The novel automation of FO+lfp reasoning that we propose is a counterexample-guided
synthesis of inductive lemmas utilizing complete procedures for pure first-order (FO) reasoning.
Our framework requires the FO reasoning procedure to be able to compute counterexample
models. The technique we present can be parameterized over any FO reasoning engine able
to provide counterexamples for provability. In our work we use a particular technique called
natural proofs that are based on systematic quantifier instantiation [27] and that is able to
provide such counterexamples.

The Anatomy of Proofs for FO+lfp: Proofs by Induction Unlike FOL, FO+lfp does
not admit complete procedures, i.e., sound proof systems for FO+lfp cannot admit proofs for
every theorem. Quick proof: given a Peano “number line”, true addition and multiplication
are definable using lfp. Hence by Gödel’s incompleteness theorem [42], even quantifier-free
FO+lfp has an undecidable validity (and satisfiability) problem.

Humans usually prove properties involving recursive definitions (or least fixpoints) using
induction. We consider logics with recursive definitions, where each recursive definition is of
the form ∀x. R(x) :=lfp ρ(x). Theorems are expressed using first-order logic over a signature
that includes these recursive definitions. An inductive proof of a theorem typically involves
sub-proofs, each of which identify a fairly strong property (the induction hypothesis) and
its proof (the induction step). We use a more general notion of induction proofs based on
pre-fixpoints, not requiring a concept of size or measure based on natural numbers upon
which to induct. We defer this notion until later and instead encourage the reader to simply
think of an inductive hypothesis as an inductive lemma and the induction step of the lemma
as the pre-fixpoint (PFP) of the lemma.

In this chapter we propose to build automated reasoning for FO+lfp with background
theories using a combination of (a) complete procedures for FO reasoning to prove theorems
and PFPs of lemmas, and (b) counterexample-guided expression synthesis for synthesizing
lemmas (i.e., induction hypotheses) that aid in proving a theorem.

We observe that proofs of the induction step (PFP) of the formula can be seen as reasoning
using pure first-order logic reasoning without induction. More precisely, we can think of a
proof of a theorem in FO+lfp as split into sub-proofs mediated by an induction principle but
otherwise consisting of pure FO reasoning. The induction principle says that proving the
PFP (induction step) of any lemma proves the lemma.

50

We can thus view the structure of an induction proof of a theorem α as identifying a finite
set L = {L1, . . . , Ln} of lemmas such that:

• For each i ∈ {1, . . . , n}, there is a purely FO proof of PFP (Li) using the earlier lemmas
L1, . . . , Li−1 as assumptions, and

• There is a purely FO proof of α with the lemmas from L as assumptions.

Notice that proofs of the above form lack any explicit induction proof and the purely FO
proofs consider each relation R is interpreted as a fixpoint definition (not least fixpoint) of the
form ∀x. R(x) ⇐⇒ ρ(x) rather than ∀x. R(x) :=lfp ρ(x). The fact that proving PFP (Li)

suffices as a proof of Li is implicit and appeals to the least fixpoint semantics of recursive
definitions only to argue that the above constitutes a proof of the theorem.

This view of an inductive proof of an FO+lfp formula as pure FO proofs mediated by
induction principles suggests a “synthesis + reasoning” methodology: (a) synthesize lemmas
that are likely to be true and inductively provable, and (b) prove theorems and lemmas using
pure FO reasoning. This idea is itself not new. For example, the induction axiom schema in
Peano arithmetic is:

∀y. (φ(0, y) ∧ (∀x. φ(x, y)⇒ φ(S(x), y)))⇒ ∀x. φ(x, y) (3.1)
for any formula φ. A proof using this axiom can hence be seen as divining formulas φ and
proving lemmas of form ∀x. φ(x, y) by using purely first-order logic over the non-inductive
axioms to prove ∀y. (φ(0, y) ∧ (∀x. φ(x, y)⇒ φ(S(x), y))).

The idea of finding proofs by induction by synthesizing inductive hypotheses and proving
them using simpler non-inductive reasoning is also not new. For example, in program
verification, inductive hypotheses are written as loop invariants or method contracts that
capture invariants of program states or effects of calling procedures. Synthesizing such
invariants and contracts has been explored using a combination of inductive synthesis and
reasoning (see work on the ICE framework [51], for example, that explicitly takes this
approach, and also the related work section). The novelty of our work lies in realizing this
technique for proving theorems in FO+lfp using finite models that witness invalidity and
non-provability for counterexample-guided synthesis.

Synthesizing Inductive Lemmas The primary technical contributions of this chapter
lie in techniques for synthesizing lemmas that (a) can be proved inductively, with their
own statement as the induction hypothesis, and (b) aid the proof of a target theorem. We
embrace the paradigm of counterexample-guided synthesis that has met impressive success in
automating verification and synthesis (e.g., in finding predicates for abstraction [5, 52] or

51

in program synthesis through the CEGIS paradigm [53, 54, 55]). The salient feature of our
technique is the use of finite FO models as counterexamples to guide the search for lemmas.

Suppose a theorem α in FO+lfp is desired to be proved valid. Our technique for automated
quantified FO reasoning (without least fixpoints), called natural proofs, uses systematic
quantifier instantiation followed by SMT-based validation of the resulting quantifier-free
formula [27, 50, 56]. Let SQI(k) be the method that systematically instantiates terms of
depth k for quantified variables then checks satisfiability of the resulting quantifier-free
formula (the latter is a decidable problem). As a simple consequence of Herbrand’s theorem
and compactness, we know that this method is complete in the sense that if β is a valid
formula in FOL, then there is some k for which SQI(k) will prove the validity of β.

At any point of the lemma synthesis procedure, we would have synthesized a set of
potentially useful lemmas already proved valid and then seek a new lemma to help prove α.

We utilize three kinds of counterexample models to guide the search for useful and provable
lemmas. In our iterative framework for synthesizing useful and provable lemmas, a prover and
a synthesizer interact: the synthesizer proposes lemmas, and the prover provides constraints
for synthesizing new lemmas. When the synthesizer proposes a lemma, the lemma can be
(a) valid and provable using SQI(k) reasoning using existing lemmas, (b) invalid but easily
shown to be so using a small model, or (c) valid or invalid, but in either case not provable
using SQI(k) and existing lemmas. Note that (a) and (c) are already exhaustive cases, and
(b) overlaps with (c).

These correspond to the three kinds of counterexamples, which we now name. Type−1
models guide the search toward lemmas that help prove the theorem α and are obtained
from the failure to prove α using FO reasoning via SQI(k). Type−2 models are small
counterexamples to validity of proposed lemmas and are obtained by searching for bounded
models using SMT solvers. Type−3 models show non-provability of lemmas and are obtained
from failure to prove the PFP of lemmas using FO reasoning via SQI(k). We narrow and
guide the search space for lemma synthesis using these three kinds of counterexamples.

The main contribution of this chapter is FOSSIL, a novel algorithmic framework for
synthesizing lemmas that uses such counterexamples and proves both lemmas and target
theorems using FO reasoning. In each round, the algorithm begins with a target theorem
α and tries proving it using the lemmas synthesized and proved valid so far. If the proof
of α fails, this failure precipitates a Type−1 counterexample which will be used to guide
the search towards lemmas that do help prove the theorem α. The lemma synthesis phase
follows, generating a lemma that satisfies the Type−1 counterexample and then attempting
to prove the validity of its PFP. If the proof of the PFP fails, this failure yields either a
Type−2 counterexample (which is a bounded model) if possible or otherwise a Type−3

52

counterexample to show non-provability of the PFP. We continue to seek new lemmas guided
by the counterexamples until a valid lemma is found, at which point we add the new lemma
to our set of valid lemmas. We recurse, trying to prove the target theorem α. Off-the-shelf
synthesis tools do not scale when employed in our framework; however, our algorithm works
efficiently via constraint solving with SMT solvers, carefully representing counterexamples as
ground formulas and formulating synthesis constraints as ground constraints.

Background Theories and Relative Completeness The techniques for inductive
reasoning that we develop in this chapter are more involved than as described above. First,
many applications, such as program verification, require handling of domains that are
constrained to satisfy certain theories, such as arithmetic and sets (sets allow the expression
of collections such as “the set of keys stored in a list” in heap-based verification and “the
set of heap locations that constitute a list” in heaplets for frame reasoning). Consequently,
our framework maintains a foreground sort modeling the heap with pointers as well as
multiple background sorts, with the background sorts constrained by theories and that admit
Nelson-Oppen style decision procedures for quantifier-free reasoning. In such settings, the
work in [27] proved that for formulas that quantify only over the foreground sort (i.e., only
involving quantification over locations of the heap), systematic quantifier instantiation is still
complete. Moreover, satisfiability of quantifier-free formulas after instantiation are supported
by SMT solvers, which can also return the three kinds of counterexamples we seek.

Second, we carefully build lemma search to admit relative completeness. We show that if
there is a proof of a theorem involving finitely many independently provable lemmas (in the
grammar of lemmas provided by the user), then our procedure is guaranteed to eventually
find one. More precisely, there are two infinities to explore—one is the search for lemmas
and the other is the instantiation depth k chosen for finding proofs. As long as our procedure
fairly dovetails between these two infinities, it is guaranteed to find a proof.

Evaluation We implement and evaluate our procedure for a logic that combines an
uninterpreted foreground sort with background sorts, where background sorts have quantifier-
free fragments that are decidable using SMT solvers. Our tool can employ generic syntax-
guided synthesis (SyGuS) engines as well as a custom synthesis tool we built; both of these
can synthesize lemmas using FO countermodels that are encoded using logical constraints.

We perform an extensive evaluation on two suites of benchmarks: one of 50 theorems
on data structure verification and another of 673 synthetically generated theorems. Our
experiments give evidence that the first-order counterexample-based techniques we develop
here are effective in synthesizing inductive lemmas and proving theorems. Apart from

53

evaluating the efficiency of our tool, we evaluate several design decisions and optimizations
in our tool. In particular, we study the efficacy of using various kinds of counterexamples
and compare our custom synthesis engine with off-the-shelf state-of-the-art synthesis engines.

Contributions The main contributions of this chapter are: (1) a counterexample-guided
synthesis framework, FOSSIL, for synthesizing inductive lemmas for proving validity in
FO+lfp with relative completeness guarantees, (2) the formulation of three kinds of coun-
terexamples that guide synthesis towards lemmas that are relevant to the theorem, lemmas
that hold at least on small models, and are provable using induction, (3) efficient synthesis
algorithms using specifications formulated as ground formulas, and (4) an implementation
and evaluation of FOSSIL on two benchmark suites of theorems over heap data structures1.

Outline This chapter is structured as follows. In Section 3.2, we define the logic used in
this paper (i.e., FO+lfp) and the notion of counterexample models, and formalize the problem
of sequential lemma synthesis that we study. In Section 3.3 we present our main contribution:
the FOSSIL algorithm for solving the sequential lemma synthesis problem, and furnish a
full run of the algorithm on a running example. Section 3.3 also formalizes the components
for checking FO+lfp validity, counterexample generation, and model-guided synthesis of
lemmas used by the core FOSSIL algorithm. Section 3.4 describes how to implement these
components. In Section 3.5 we prove that FOSSIL is relatively complete for the problem of
synthesizing independent lemmas and indicate directions for building complete algorithms
for sequential lemma synthesis. Section 3.6 details the implementation and evaluation of
FOSSIL on two benchmark suites of FO+lfp theorems that we create, including several
ablation studies that show the efficacy of various choices.

3.2 PRELIMINARIES AND PROBLEM DEFINITION

In this section, we define the first-order logic framework we work with (first-order logic
with recursive definitions that have lfp semantics) and give the problem definition for solving
theorems in FO+lfp using synthesis of inductive lemmas and first-order proofs.

3.2.1 First-Order Logic over Theory-Constrained Background Sorts

The first-order logics (with and without recursive definitions) that we work with are over a
multisorted universe that has a single distinguished foreground sort and multiple background

1Our benchmarks and tool can be found at: https://github.com/muraliadithya/FOSSIL

54

https://github.com/muraliadithya/FOSSIL

sorts. The universes of all these sorts are pairwise disjoint. The foreground sort and the
functions and relations that refer to it (as part of the domain or codomain) are entirely
uninterpreted (no axioms that constrain them). Background sorts and functions and relations
involving only background sorts are constrained by certain theories.

Formally, we work with a signature of the form Σ = (S;C;F ;R), where S is a finite
non-empty set of sorts. C is a set of constant symbols, where each c ∈ C has some sort
σ ∈ S. F is a set of function symbols, where each function f ∈ F has a type of the form
σ1 × . . . × σm → σ for some m, with σi, σ ∈ S. R is a set of relation symbols, where each
relation R ∈ R has a type of the form σ1 × . . .× σm.

We assume a designated foreground sort, denoted by σf. All other sorts in S are called
background sorts, and for each such background sort σ we allow the constant symbols of
type σ, function symbols that have type σn → σ for some n, and relation symbols that have
type σm for some m to be constrained using an arbitrary theory Tσ. All other functions and
relations that involve either the foreground sort or multiple background sorts are assumed to
be uninterpreted (not constrained by any theory). We consider standard first-order logic (FO)
over these multisorted signatures, with standard syntax and semantics, under the combined
theories [42].

Counterexamples We require that validity of quantifier-free logic under the combined
theories is decidable. Furthermore, when a quantifier-free formula is not valid, we require this
decision procedure to provide models that show satisfiability of the negation of the formula.
The truth value of the quantifier-free formula only depends on a finite portion of the model
(corresponding to the terms used in the formula, since the formula is quantifier-free). This
finite portion can be described by a conjunction of atomic ground formulae. We require models
to be given indirectly by such conjunctive ground formulae. Formally, given a quantifier-free
formula φ that is satisfiable, we require that the solver return a conjunctive ground formula
gf such that (a) gf is satisfiable and (b) gf ⇒ φ is valid. If φ contains variables, then these are
interpreted as or replaced by Skolem constants that are part of the signature of gf. Intuitively,
gf indicates the existence of one or more models such that φ is satisfied on all of them. The
formula gf encodes enough information about these models to ensure that φ is satisfied in
them. The following example illustrates these ideas.

Example 3.1 (Counterexample models as conjunctive ground formulas). Consider the
formula (f(x) = y)⇒ y > 3 where f : σ0 → Int is an uninterpreted function, x is of the sort
σ0, and y is of sort Int . This formula is invalid, and we can witness the satisfiability of its
negation (f(x) = y)∧¬(y > 3) using a modelM where x is interpreted to an element u and

55

f(u) is interpreted to 2. M can be captured using the formula gf : f(x) = 2. Indeed, one
can see that

(
f(x) = 2

)
⇒
(
(f(x) = y) ∧ ¬(y > 3)

)
is a valid formula. It is also imminent

that gf is satisfiable sinceM realizes it.

In our tools, we work with certain Nelson-Oppen combinable decidable theories [11, 28, 29,
30] (in particular linear arithmetic over integers, sets of integers). These are supported by
SMT solvers that guarantee both decidability of quantifier-free formulae as well as model
generation as above.

3.2.2 First-Order Logic with Recursive Definitions (FO+lfp)

Our target theorems are in a dialect of first-order logic over a multisorted universe (universes
similar to the one above) but with recursive definitions that have least fixpoint semantics.

We identify a subset Rrec of the relational symbols R and endow them with definitions;
these relations are not directly interpreted by models, rather they are defined uniquely by
their definitions. In our work we assume that these recursive definitions only relate elements
of the foreground sort. The set of recursive definitions D for the symbols Rrec are of the form

R(x) :=lfp ρR(x) (3.2)
where R ∈ Rrec, x are variables over the foreground sort, and ρR(x) is a quantifier-free first-
order logic formula. Note that a definition ρR can utilize all the sorts and functions/relations
in the model. We also assume that there is only one definition for each R ∈ Rrec.

To ensure the well-definedness of definitions, we assume that the symbols in Rrec are
ordered in layers, and that each R′ ∈ Rrec that occurs in the definition of R is either in a
smaller layer, or it is in the same layer and only occurs positively (under an even number
of negations) in the definition of R (similar to stratified Datalog [57]). The semantics of
recursively defined relations is given by the least fixpoint (lfp) that satisfies the relational
equations (the condition that each recursive definition only refers positively to recursively
defined relations in the same layer ensures that the least fixpoint exists [58])2.

Our theoretical treatment assumes that there is only one layer for simplicity. Therefore,
each recursive definition only mentions other recursively defined relations positively. However,
the results also hold for several layers of recursive definitions, and indeed our experiments
utilize them.

2Our definition of FO+lfp is similar to the one used in Finite Model Theory: see Libkin [59], Chapter
10. Notably, our notion of recursive definitions is more restrictive than general FO+lfp because recursive
definitions should only be universally quantified and only over the foreground sort. This technical condition
enables us to build effective complete FO validity procedures: see Section 3.2.4.

56

Example 3.2 (Linked Lists). Let n be a unary function symbol modeling a pointer of type
σ0 → σ0, i.e., from the foreground sort to the foreground sort. Let nil be a constant of sort
σ0, and list be a unary relation with the recursive definition

list(x) :=lfp ite(x = Nil , true, list(n(x)))

Then, in any modelM where list is interpreted using its lfp definition, list holds precisely
for those elements that are the head of a finite linked list with n as the next pointer. FOL
without lfp cannot describe such linked lists [59]. Note that unlike Algebraic Datatypes
(ADTs), if list(x) ∧ list(y) ∧ x ̸= y holds in a model, the lists pointed to by x and y are not
necessarily disjoint and could “merge” in the model. We can also model disjointedness using
heaplets, as we show in the following example.

Example 3.3 (Trees and Heaplets). Consider the following recursive definition for a predicate
tree(x) which expresses that x is the root of a binary tree on pointers l (left) and r (right):

tree(x) :=lfp ite(x=nil, true, tree(l(x)) ∧ tree(r(x))

∧ htree(left(x)) ∩ htree(right(x))=∅
∧ Singleton(x) ∩ (htree(l(x)) ∪ htree(r(x)))=∅)

htree(x) :=lfp ite(x = nil, ∅, Singleton(x) ∪ htree(l(x)) ∪ htree(r(x)))

Observe again that since our data structures are unlike ADTs, pointers l and r may
possibly point to the same element (“merge”) in arbitrary heaps/models. Therefore, to define
trees we define a recursive definition for the partial function expressing the heaplet of a tree
htree : σ0 → σsl where σsl is a background theory of sets of locations with which we demand
that the left and right subtrees are disjoint. This is similar to constraints used in Separation
Logic to express trees [60].

We now state the usual notion of validity/entailment in FO+lfp:

Definition 3.1 (FO+lfp Entailment). For a sentence α and a set Γ of formulas we write
Γ ∪ D |=LFP α if α is true in all models of Γ using the lfp semantics for relations with
definitions given in D.

We conclude this section with some remarks.

First-Order Abstractions of Recursive Definitions Given an FO+lfp formula, we can
sometimes prove it valid using pure FOL. We can do this by interpreting recursive definitions
in D to be fixpoint definitions (as opposed to lfp). More precisely, we constrain the relations
using FOL as ∀x. R(x)↔ ρR(x). If α is valid under the fixpoint interpretation of recursive

57

relations, then it is of course valid using least fixpoint interpretation as well, but the converse
does not hold. Interpreting recursive definitions as fixpoint definitions rather than least
fixpoint definitions is hence a form of sound abstraction. We write Φ ∪ Dfp |=FO α to denote
that α is valid using the FO fixpoint abstractions Dfp of D.

Partial Functions The reader may have observed in Example 3.3 that we presented a
recursively defined function htree. Although we don’t allow them in the theoretical treatment,
our tools support recursively defined partial functions from the foreground sort to both
foreground and background sorts (for modeling heaplets of structures, lengths of lists, heights
of trees, etc.). However, partial functions can be modeled using two predicates: one recursively
defined predicate that captures the domain of the partial function and another predicate
defined using only FOL that captures the map of the function.

FO+lfp Fragment In this work we only handle the validity of formulas whose quantification
is purely over the foreground sort. This fragment is well suited for the domain of heap
verification that we study. We can model the heap as the foreground sort and express
recursively defined functions and properties that only quantify over the heap. However, it is
not as powerful as full FO+lfp. For example, the logic cannot talk about array properties
(where the array is modeled as a map f : Int → V from indices to values in a domain V)
that quantify over integers, which is a background sort. We also cannot express theorems
like “For every positive integer n, there is a linked list of length n” as this requires universal
quantification over the background sort. These restrictions are important as they allow us to
leverage practical complete algorithms [27] for FOL validity for this restricted fragment in
implementing the FOSSIL framework (see Section 3.2.4).

3.2.3 The Inductive Lemma Synthesis Problem for Proving FO+lfp Formulas

In this chapter we develop algorithms that prove an FO+lfp formula α valid given a finite
set A of axioms and a set D of recursive definitions with lfp semantics. We want to show
that A ∪ D |=LFP α mainly using first-order reasoning. Clearly, if A ∪ Dfp |=FO α, then
A ∪D |=LFP α as argued above.

We use the following running example to illustrate ideas developed in the sequel:

Example 3.4 (Running Example). Consider the recursively defined relation lseg(x, y) defining
linked list segments between locations x and y on the pointer n:

lseg(x, y) :=lfp ite(x = y, true, lseg(n(x), y))

58

Now, consider the following Hoare Triple:
{pre:lseg(x,y1)} if (y1 = nil) then y2 := y1 else y2 := y1.n {post:lseg(x,y2)}

The above triple generates the following Verification Condition (VC) α∗:

lseg(x, y1)⇒
(
ite(y1 = Nil , y2 = y1, y2 = n(y1))⇒ lseg(x, y2)

)
We denote by D∗ the singleton set containing the definition of lseg . We will use the problem

of checking D∗ |=LFP α∗ as a running example in this chapter. Note that α∗ is actually valid
in FO+lfp but it is not FO-valid, i.e., D∗ |=LFP α∗ holds but Dfp

∗ |=FO α∗ does not. This
makes the problem a good candidate for lemma synthesis. We describe a run of our algorithm
on this example in Section 3.3.4.

The overall idea in our approach is to use intermediate inductive lemmas to find an FO proof
of the goal. We handle a particular fragment of FO+lfp in our work. First, we require the
goal α to have quantification only over the foreground sort. Second, we only consider lemmas
of the form L = ∀x. R(x)⇒ ψ(x) for variables x over the foreground sort, a quantifier-free
formula ψ, and a recursively defined relation R ∈ Rrec. Finally, we prove lemmas valid using
a specific form of induction called the pre-fixpoint (PFP) formula. Given a lemma L of the
form above, the PFP of L expresses that R ∧ ψ is a pre-fixpoint of the definition of R:

PFP(L) := ∀x.ρR(x,R ∧ ψ)⇒ ψ(x)

where ρR(x,R ∧ ψ) is the formula obtained from ρR(x) by replacing every occurrence of
R(t1, . . . , tk) for terms t1, . . . , tk in ρR by ψ(t1, . . . , tk) ∧ R(t1, . . . , tk). It turns out that if
PFP (L) is FO-valid, then L is a valid FO+lfp formula, as the following theorem states:

Theorem 3.1. [27] If A∪Dfp |=FO PFP(L), then A∪D|=LFP L.

We use the above formalism to define the notion of an inductive lemma, as well as the notion
of a sequence of lemmas that prove a theorem using FO reasoning.

Definition 3.2 (Inductive Lemmas). A lemma L is inductive for A ∪ Dfp if A ∪ Dfp |=FO

PFP (L). If A and D are clear from the context, we just say that L is inductive.

Example 3.5 (Running Example: Inductive Lemma). Consider in the setting of Example 3.4
the following lemma L∗:

∀x, y1, y2. lseg(x, y1)⇒
(
lseg(y1, y2)⇒ lseg(x, y2)

)
(L∗)

which expresses that if we have a list segment pointed to by x until y1, as well as one pointed
to by y1 until y2, then x points to a list segment until y2. It turns out that L∗ is inductive i.e.,

59

Dfp
∗ |=FO PFP (L∗). In other words, the PFP of the lemma is provable in pure FOL, without

induction, and with FO abstractions of the definitions (fixpoint instead of least fixpoint).
The crucial part of the proof is the following subformula of PFP (L∗):

∀x, y1, y2.
(
lseg(y1, y2)⇒ lseg(n(x), y2)

)
⇒
(
lseg(y1, y2)⇒ lseg(x, y2)

)
which is valid given Dfp

∗ since, according to the definition of lseg , if lseg(n(x), y2) holds then
lseg(x, y2) also holds (in the non-degenerate case).

We now define the notion of proving a theorem using lemmas as well as the synthesis problem
that it poses which we tackle in this chapter.

Definition 3.3 (Sequential Lemmas that Prove a Theorem). A sequence (L1, . . . , Ln) of
lemmas provides an inductive proof of α ifA∪Dfp∪{L1, . . . , Ln} |=FO α and for each 1 ≤ i ≤ n,
Li is inductive for A ∪Dfp ∪ {L1, . . . , Li−1} (i.e., A ∪Dfp ∪ {L1, . . . , Li−1} |=FO PFP (Li)).

Definition 3.4 (Sequential Lemma Synthesis Problem). Given a grammar G for
expressing lemmas and a theorem α, find a sequence of lemmas admitted by G that provides
an inductive proof of α (as in Definition 3.3).

Independently Proven Lemmas We can also define a simpler synthesis problem corre-
sponding to a weaker class of inductive proofs. Specifically, we can require a set of lemmas
that are independently proven inductive and help prove a theorem:

Definition 3.5 (Independent Lemmas that Prove a Theorem). A set {L1, . . . , Ln} of lemmas
provides an inductive proof of α if A ∪ Dfp ∪ {L1, . . . , Ln} |=FO α and for each 1 ≤ i ≤ n,
A ∪Dfp |=FO PFP (Li).

The difference between the two classes of proofs is that the inductiveness of lemmas in a
sequential proof can depend on previous lemmas. As one might expect, the notion of proof
using independent lemmas is strictly weaker than the one that uses a sequence of lemmas.
We conclude this section with the running example.

Example 3.6 (Running Example: Lemma Proving a Theorem). Consider L∗ and α∗

introduced earlier in the running example. Now, observe that Dfp
∗ ∪ {L∗} |=FO α∗. This is

because the crucial part of the validity of α∗ is the following formula:

lseg(x, y1)⇒
(
(y1 ̸= Nil ∧ y2 = n(y1))⇒ lseg(x, y2)

)
which captures the ‘else’ case of the ite subformula of α∗ (see Example 3.4). We can see
that L∗ entails the above formula in FO since (informally) y2 = n(y1) is a special case of
lseg(y1, y2). Combined with the fact that L∗ is inductive (Example 3.5), we have that L∗

60

proves α∗ in the sense of Definition 3.3. We illustrate a run of our synthesis algorithm that
proves α∗ by synthesizing L∗ in Section 3.3.4.

In Section 3.3 we present our core algorithm FOSSIL for solving the sequential lemma
synthesis problem. This algorithm, apart from being sound in producing sequential lemmas
that prove the theorem, is accompanied by a relative completeness result: it is guaranteed to
find a proof as long as there is a set of independent lemmas that prove the theorem.

3.2.4 Background: First-Order Validity using Systematic Quantifier Instantiation

In this section we describe the Systematic Quantifier Instantiation (SQI) mechanism for
FO validity (without recursive definitions/lfp) that we use, developed in earlier work [27].

Let φ be an FO formula. To check the validity of φ, we negate and Skolemize it —
introducing both Skolem constants and Skolem functions — and obtain a purely universally
quantified formula ψ such that φ is valid if and only if ψ is unsatisfiable. Let ψ be of the
form ∀x. η(x) where η(x) quantifier-free. For a set of ground terms T , we denote by ψ[T] the
set of all quantifier-free formulas that are obtained by instantiating the variables x in ψ by
terms in T , i.e.,

ψ[T] := {η(t) | t is a tuple of terms in T of arity | x |} (3.3)
It follows that if ψ[T] is unsatisfiable then ψ is unsatisfiable and therefore α is valid. Since

we assume in our setting that satisfiability/validity of quantifier-free formulas is decidable
(see Section 3.2.1), checking whether ψ[T] is unsatisfiable is decidable.

Systematic Quantifier Instantiation The above suggests a complete semi-decision
procedure for validity based on systematic quantifier instantiation (SQI). Let ψ ≡ ∀x. η(x) be
the formula that we want to check for unsatisfiability where x are variables of the foreground
sort and η is quantifier-free. For any k ∈ N, let Tk denote the set of all ground terms whose
type is the foreground sort and are of depth at most k (we assume that the signature contains
at least one constant symbol for the foreground sort). Then, starting with k = 0, we check
whether ψ[Tk] is unsatisfiable. If it is then we halt and report that φ is valid; otherwise, we
increment k and repeat. This motivates the following definition:

Definition 3.6 (Provability at depth k using SQI). A formula φ is provable at depth k using
SQI if the negated and Skolemized formula ψ is such that ψ[Tk] is unsatisfiable.

The above is a sound procedure, i.e., if φ is provable at depth k using SQI (for some k) then
it is clearly valid. It is also a complete procedure for validity in pure first-order logic without

61

any theories (i.e., just uninterpreted functions). This follows from Herbrand’s theorem and
the compactness theorem. It turns out that this continues to be a complete procedure in the
multisorted setting for the kind of FOL formulas that we work with. i.e., those that quantify
only over the foreground sort. We formally state below this result from the work in [27]:

Theorem 3.2 (From [27]). Let φ be a formula with quantification only over the foreground
sort. Then φ is valid if and only if there exists k ∈ N such that φ is provable at depth k

using SQI.

We implement and use SQI for proving validity of first-order logic formulae in this work.

3.3 THE FOSSIL ALGORITHM FOR SEQUENTIAL LEMMA SYNTHESIS

In this section, we present the main contribution of this chapter: FOSSIL (First-Order
Solver with Synthesis of Inductive Lemmas), our algorithm for solving the Sequential Lemma
Synthesis problem formulated in Definition 3.4. Figure 3.1 shows the components of our
framework which we describe in Section 3.3.1. FOSSIL is a counterexample-based lemma
synthesis algorithm that orchestrates interactions between these external components through
three kinds of counterexamples. We formally define these counterexamples in Section 3.3.2.
We then present the FOSSIL algorithm in Section 3.3.3. Finally, we illustrate a run of
FOSSIL on our running example in Section 3.3.4. (the algorithm is guaranteed to find a
proof if there is a set of independent lemmas that prove the goal).

Figure 3.1: Components of FOSSIL

62

3.3.1 Components of FOSSIL

In this section, we discuss the external components used by the core FOSSIL algorithm.
We only describe what these components are, deferring implementation details to Section 3.6.
Let us fix a set A of axioms and a set D of recursive definitions throughout the following
presentation. We also fix a goal formula α and a grammar G for lemmas. We assume that
A consists of universally quantified sentences, and that α is also a universally quantified
sentence (using Skolemization if necessary).

FOSSIL finds a proof of α by synthesizing a sequence of lemmas L = (L1, L2, . . . , Ln)

belonging to Lang(G) such that L is a sequence of lemmas proving α according to Definition 3.3.
The high-level external components of FOSSIL are shown as purple boxes/arrows in Figure 3.1.
We describe their abstract interface below in terms of formulae and counterexamples. We
encourage the reader to think of counterexamples as finite FO models for now, pending their
formalization in Section 3.3.2. The components of FOSSIL are:

1. First-Order Validity Engine SQI(φ, k): This is an FO validity checking algorithm based
on Systematic Quantifier Instantiation (see Section 3.2.4). It takes as input a formula φ
and a natural number k, and outputs whether φ valid or unprovable at depth k using SQI.

2. Provability Counterexample Generator Counterexample(φ, k): This is a counterexam-
ple generation module that is part of the FO validity engine. When a formula is found to
be unprovable (using term instantiation with terms of depth k) it returns a finite coun-
terexample model. This model is one in which (¬φ)[Tk] holds. (¬φ)[Tk] is the negation of
the formula instantiated by terms up to depth k. Intuitively, the counterexample witnesses
the non-provability of φ using term instantiation with depth k terms. Note that finite
counterexample models (i.e., where the foreground universe is finite) always exist because
(¬φ)[Tk] is a quantifier-free formula. This module is used to generate the Type−1 and
Type−3 counterexamples (the inputs being the goal or a proposed lemma respectively).
The types of counterexamples are explained below in Section 3.3.2.

3. Bounded Counterexample Generator BoundedCex(φ, size): Given an FO+lfp formula
φ and a parameter size this module returns a finite model with at most size elements in
the foreground sort that shows that the formula is not valid, if possible. It may also return
that such a model could not be found (because one may not exist at that size). These
models interpret recursively defined predicates using the true lfp semantics and will be
used as Type−2 counterexamples.

4. Synthesis Engine Synthesize(C,G): This module synthesizes candidate lemmas. It takes
as input a set of counterexample models expressed as quantifier-free constraints C and

63

a grammar G, and generates an expression in Lang(G), if one exists, that avoids all
counterexamples.

3.3.2 Counterexamples

FOSSIL is a counterexample-guided algorithm that uses the verification and synthesis
components in rounds of lemma proposals. In this section, we define the notion of the various
counterexamples that we use.

While counterexamples can be intuitively thought of as finite models for the foreground
universe, we will formally treat them as conjunctive ground formulae as described in Sec-
tion 3.2.1. For example, consider the model depicting a one-element linked list on the pointer
n. The foreground universe has two elements, say v1 and v2, such that n(v1) = v2 and nil is
interpreted to be v2. Then the ground formula gf ≡ v1 ̸= v2 ∧ v2 = Nil ∧ n(v1) = v2 with new
constant symbols v1 and v2 defines a class of models that contains the intended model. In
general, a ground formula captures a class of models where a finite portion of the model is
constrained by the formula.

In our algorithm we evaluate formulas over tuples of elements on models represented
by a ground formula gf. We use the notation gf(c) to indicate that the model contains
interpretations for the constants in c, and we use this tuple to instantiate the variables of
formulas that we evaluate over the model. For example, see lines 13 and 14 of the FOSSIL

algorithm (Algorithm 3.1). Similarly, we refer to a set of elements interpreted by a model by
C and use it to evaluate a formula on all tuples over C, as in line 12.

The FOSSIL uses three kinds of counterexamples. Let us fix ctx ≡
∧
(A ∪Dfp ∪ L) to be

the context formula containing the axioms, recursive definition abstractions, and the valid
lemmas L discovered so far.

Type−1 Counterexamples Type−1 counterexamples guide the synthesis toward lemmas
that help prove the goal. Given a term depth k, Type−1 counterexamples witness non-
provability of the goal α using term instantiation with depth k terms. In other words, this is
a counterexample to the non-provability of ctx ⇒ α using the instantiation.

Formally, a Type−1 counterexample at depth k is a satisfiable ground formula gf1 such
that |=FO gf1 ⇒ (ctx ∧ ¬α[c])[Tk], where c is a tuple of Skolem constants resulting from the
Skolemization of the existential quantifiers in the negation of α. Such a model witnesses that
α cannot be proven from ctx by instantiation with terms of depth k. We use Type−1 coun-
terexamples in FOSSIL in lemma synthesis by accessing tuples of elements that correspond
to terms in Tk (line 12 in Algorithm 3.1). We name these elements and represent them as a

64

set C, denoting the counterexample by gf1(C).

Generating Type−1 counterexamples: Recall from Section 3.2.1 that in our setting, for any
satisfiable quantifier-free formula φ, we can obtain a satisfying model as a conjunctive ground
formula. When failing to prove ctx ⇒ α using depth k term instantiation we obtain a
satisfiable conjunctive ground formula from the satisfiability of (ctx ∧ ¬α[c])[Tk]. This is the
Type−1 counterexample.

Type−2 Counterexamples These counterexamples correspond to finite models (i.e., those
in which the foreground sort is finite) that falsify a candidate lemma L in FO+lfp. Such a
modelM satisfiesM |=LFP ctx ∧ ¬L. When a lemma L is proposed, creating a small model
in which L is false can easily show its invalidity.

Formally, a Type−2 counterexample for a lemma of the form ∀xR(x)→ ψ(x) is represented
as a ground formula gf2(c) with constants c of the foreground sort such that | c |=| x |. The
formula can include constraints involving relations in Rrec. gf2 interprets the recursively
defined predicates with lfp semantics. We require that there exists an FO modelM whose
interpretation for predicates in Rrec matches their recursive definitions D (we describe how we
implement this requirement in Section 3.4.2). Finally, we require |=FO gf2(c)⇒ R(c) ∧ ¬ψ(c).

For example, consider the finite model consisting of two locations, say e1 and e2, where
e1 is the head of a one-element linked list and e2 points to itself on the n pointer. This
model is captured by the formula e1 ̸= nil ∧ e2 ≠ nil ∧ next(e1) = nil ∧ next(e2) =

e2 ∧ list(nil) ∧ list(e1) ∧ ¬list(e2). Note that the correct valuation of list on this universe is
given by the formula.

Generating Type−2 counterexamples: We fix a bound size ∈ N and use an SMT solver to
identify a model with at most size elements in the foreground sort that falsifies the lemma, if
one exists. We provide further details in Section 3.4.2 and Section 3.6.

Type−3 Counterexamples Type−3 counterexamples guide the search towards lemmas
that are inductively provable using their PFP. When the PFP of a proposed lemma is found to
be unprovable (using depth k term instantiation), we obtain a counterexample that witnesses
the non-inductiveness of L (with respect to the lemmas discovered so far). Note that we
do not actually know whether the lemma is valid/invalid or provable/unprovable as it may
require discovering other lemmas or a bigger instantiation depth. This is similar to a Type−1
counterexample, where instead of the target theorem we generate counterexamples to the
PFP of a candidate lemma.

Formally, a Type−3 counterexample for a lemma ∀xR(x)→ ψ(x) is a ground formula gf3(c)

with | c |=| x | such that |=FO gf3(c)⇒ (ctx ∧ ¬PFP(L)[c]) [Tk] holds and gf3 is satisfiable.

65

The constants c are Skolem constants obtained from Skolemizing the existential formula
¬PFP(L).

Generating Type−3 counterexamples: Similar to Type−1 counterexamples, the generation of
Type−3 counterexamples is done using the quantifier-free formula obtained from the proof
failure of ctx ⇒ PFP(L) using depth k term instantiation.

3.3.3 The FOSSIL Algorithm

Algorithm 3.1 shows the pseudocode of FOSSIL using the external components SQI,
Counterexample, BoundedCex, and Synthesize described in Section 3.3.1. The input is a set of
axioms A, a set of recursively defined predicates D, a grammar G whose language potentially
contains the lemmas of interest, and the goal α. The algorithm is parameterized over a depth
k for term instantiation and a bound h on the height of the expressions to synthesize from G.

The algorithm has an outer loop for proving the goal correct on line 5 and an inner loop
for discovering valid lemmas on line 8. At a general point in the execution on line 5, we
try to prove the formula Φα (which says that the valid lemmas found imply the goal) using
SQI with terms of depth k. If it is valid, we halt and return the sequence of lemmas found.

If Φα is unprovable, we obtain a Type−1 counterexample with a foreground universe C on
line 7 and enter the inner loop to discover valid lemmas that will help the proof.

At a general point in the inner loop execution on line 8, we have a Type−1 counterexample,
along with a set of Type−2 counterexamples and a set of Type−3 counterexamples. We call
the Synthesize module to find a lemma in G of the form L(x) = ∀x.R(x)→ ψ(x) and height
bounded by h such that: (a) the lemma is false on the Type−1 model, i.e., false on some
tuple of elements from C (line 12— note that L[C] denotes the set of all instantiations of L
by elements from C, and

∧
L[C] their conjunction); (b) the lemma holds on every Type−2

counterexample at the tuple c witnessing the invalidity of a previously proposed lemma for
R, i.e., with R appearing in the antecedent (line 13); and (c) the PFP of the lemma holds on
every Type−3 counterexample at the tuple c witnessing the non-inductiveness of a previously
proposed lemma for R (line 14).

If no such lemma is found, we halt and restart the algorithm with higher values for k and
h. If a lemma L is found, we try to prove ΦL valid on line 18 using terms of depth k, which
says that PFP(L) holds (i.e., L is inductive) given the other valid lemmas discovered. If it is
valid, we add L to our assumptions and the current sequence of lemmas, stop the inner loop,
and retry the proof of the theorem on line 5. We also discard Type−3 counterexamples since
previously non-provable lemmas may now be provable.

If ΦL is unprovable, we try to obtain a bounded Type−2 counterexample gf2(c) on line 25

66

Input: axioms A, recursive definitions D, grammar G, goal α, SQI depth parameter k,
lemma height h
Output: Sequence of valid lemmas L ∈ L(G) (of height at most h) that prove α valid in
FO+lfp using SQI(k)
Imports: SQI, Counterexample, BoundedCex, Synthesize

1: procedure FOSSIL[A,D,G, α; k, h]
2: Compute Gh ⊆ G such that Lang(Gh) only contains formulas of height at most h
3: L := (), Type−2 := ∅, and Type−3 := ∅ for each R ∈ D
4: Φα :=

(∧
A ∪Dfp

)
⇒ α

5: while SQI(Φα, k) ̸= V ALID do
6: gf1(C) := Counterexample(Φα, k)
7: Type−1 := gf1(C)
8: while True do
9: L := Synthesize(S,Gh)

10: such that
11: L is of the form ∀x.R(x)→ ψ(x) and satisfies the following constraints:
12: |=FO gf1(C)⇒ ¬(

∧
L[C]), where gf1(C) is the current Type−1 model

13: |=FO gf2(c)⇒ L(c) for all (gf2(c), R) ∈ Type−2
14: |=FO gf3(c)⇒ PFP (L)(c) for all (gf3(c), R)∈Type−3
15:
16: If no lemma found, call FOSSIL(A,D,G, α; k+1, h+1)
17: ΦL :=

(∧
A ∪Dfp ∪ L

)
⇒ PFP (L)

18: if SQI(ΦL, k) = V ALID then
19: // Valid Lemma
20: L := L ◦ L // sequence extension
21: Φα :=

(∧
A ∪Dfp ∪ L

)
⇒ α

22: Type−3 := ∅
23: Continue Loop on Line 5
24: else // Unprovable Lemma
25: gf2(c) := BoundedCex(L, size)
26: if gf2(c) found then // Invalid Lemma
27: Type−2 := Type−2 ∪ {(gf2(c), R)}
28: else // Lemma is neither provable nor refutable
29: gf3(c) := Counterexample(ΦL, k)
30: Type−3 := Type−3 ∪ {(gf3(c), R)}
31: Continue loop on Line 8

Algorithm 3.1: Algorithm for Unfolding Definitions followed by Quantifier-Free Reasoning

such that L does not hold on c. If we cannot obtain a Type−2 counterexample, then we
obtain a Type−3 counterexample gf3(c) such that PFP(L) does not hold on c. We add these
counterexamples to their respective sets and continue searching for valid lemmas on line 8.

67

3.3.4 Running Example: List Segments

In this section, we present a full execution of our algorithm on the running example
introduced in Example 3.4. Let us recall the Verification Condition (VC) α∗ introduced
earlier:

lseg(x, y1)⇒
(
ite(y1 = Nil , y2 = y1, y2 = n(y1))⇒ lseg(x, y2)

)
(3.4)

We illustrate a run of our algorithm that proves α∗ First, it turns out that α∗ is not
FO-valid and therefore not provable using SQI. It is also not provable by induction using the
formula itself as the induction hypothesis, i.e., Dfp

∗ |=FO PFP (α∗) does not hold.

Type−1 Counterexample We feed our goal α∗ to the SQI module with k = 1 from
which we obtain a Type−1 counterexampleM1 (line 7 in Algorithm 3.1):

u1 7→ u2 7→ u3 7→ u3

u4 7→ u3, u5 7→ u5
and

x = u1, y1 = u4, y2 = u3, Nil = u5

lseg(u1, u3) = false, and lseg is true otherwise
(3.5)

where we use u 7→ v to represent n(u) = v and ui are elements of the model returned by the
solver (one can think of them as new constants). We make some observations here about
the interpretation of lseg inM1. The interpretation is not consistent with lfp semantics as
lseg(u1, u4) = true but u1 never reaches u4 following the n pointer. In fact, the interpretation
is not even consistent with the fixpoint semantics Dfp

∗ as the definition does not hold for
lseg(u1, u3). This is because SQI at k = 1 only enforces the fixpoint interpretation for lseg if
the two locations are one step away. Therefore,M1 merely witnesses the non-provability of
α∗ using SQI with k = 13.

Type−2 Counterexample We now search for a lemma using the Synthesize module
(line 9), which could propose the lemma L1 ≡ ∀x, y. lseg(x,Nil)⇒ lseg(y, x). L1 is not true
on M1 and eliminates it as expected, but it is not valid (and is hence found not provable
on line 18). We now give it to the BoundedCex module (line 25) which returns the Type−2
counterexampleM2:

v1 7→ v2 7→ v2 and
x = v1, y = v2, Nil = v2

lseg(v2, v1) = false, and lseg is true otherwise
(3.6)

M2 is a model of a one-element linked list where the interpretation of lseg is consistent
3The reader may wonder whether using SQI at k = 2 proves α∗. However, this is also not true as one can

construct a model similar toM1 where u3 is three steps away from u1 instead of two. In fact, there exists
such a counterexample for any k.

68

with the lfp semantics. We add M2 to the set of Type−2 models (line 27) ensuring that
future lemmas at least hold true on this simple model and continue our search.

Type−3 Counterexample At some point in the search we obtain the lemma L2 ≡
∀x, y. lseg(x, y)⇒ (lseg(y,Nil)⇔ lseg(x,Nil)). L2 is valid but, as it turns out, PFP (L2) is
not FO-valid (under Dfp

∗) and therefore L2 is not provable. The failure of the check on line 18
leads to the generation of a Type−3 counterexample4 (line 29)M3 which is similar in spirit
toM1 as it witnesses the non-provability of PFP (L2) by SQI. We do not present the model
here in the interest of brevity. We addM3 to our set of countermodels (line 30) to ensure
that L2 is not re-proposed (until we get another valid proposal) and continue lemma search.

Denouement After many such rounds of lemma proposal and counterexample generation,
the synthesizer proposes the lemma L∗ ≡ ∀x, y1, y2. lseg(x, y1)⇒ (lseg(y1, y2)⇒ lseg(x, y2))

introduced in our running example (Example 3.5 in Section 3.2.3). We know from Examples 3.5
and 3.6 that L∗ is inductive and proves α∗, and in fact it is provable with SQI at k = 1.
Therefore, the checks on line 18 and subsequently on line 5 both succeed, whereupon FOSSIL

terminates and reports that α∗ is valid along with the lemma L∗ used to prove it.

3.4 SYNTHESIS AND COUNTEREXAMPLE GENERATION ENGINES

In this section, we provide details of the individual modules from Figure 3.1. We refer the
reader to Section 3.2.4 for the SQI module and only describe the synthesis and counterexample
generation modules below.

3.4.1 Synthesis Engine

The module Synthesize takes a finite grammar for expressing lemmas along with a set of
ground constraints ψ(exp) over an expression variable exp. A finite grammar is one that
generates a finite language. It produces a formula φ in the grammar such that ψ is valid
when exp is replaced with φ.

This problem formulation is similar to SyGuS [53, 61] in that we have a grammar and
constraints on the synthesized expression. However, SyGuS specifications are of the form
∀x. ψ(exp, x) and can therefore be more complex. In contrast, our constraints have no

4Observe here that a Type−3 counterexample can always be generated for an unprovable lemma, regardless
of whether the lemma is truly invalid or not.

69

variables or quantification and are grounded. We can of course use SyGuS solvers as synthesis
engines, and indeed we do so in a version of our implementation of FOSSIL (see Section 3.6.1).

We now describe our custom synthesis engine tailored for ground constraints. First, since
our lemmas are all purely universally quantified over the foreground sort we make the
quantifiers implicit and only synthesize quantifier-free expressions. Second, we reduce the
synthesis to a quantifier-free query over a combination of theories that can be effectively
handled by modern SMT solvers [11, 29]. Since derivations from the grammar are of finite
height, it is easy to see that we can encode any expression in the language using a finite
set of boolean variables representing choices of production rules for each nonterminal in a
derivation. Encodings like these are typical in constraint-based synthesis. Combined with
the fact that the constraints are grounded, synthesis reduces to a quantifier-free SMT query
that asks for an assignment to the boolean variables representing a candidate lemma that
satisfies the constraints.

Grounded Constraints and Using Boolean Constraint Solvers One important
optimization that we did in the synthesis engine is to solve it using (essentially) Boolean
constraints. Counterexamples in our setting are finite models that can be captured using
grounded formulas as described in the previous section. Given a grammar, we first bound the
depth of the grammar (this bound is incremented in an outer loop) and we model the choices
of which production rules are applied using a set of Boolean variables b. Consequently, each
valuation of b stands for a formula ψ[b]. For conforming to a counterexample ce, we need to
write a formula Evalce(b) that checks whether the formula ψ[b], the formula encoded by b,
holds on the model ce for a particular instantiation of the free variables in ψ. (The actual
lemma universally quantifies over variables and asserts ψ.)

The straightforward encoding of this problem will essentially evaluate the parse tree of
the formula, examining the appropriate Boolean variables in b to interpret subformulas or
subterms at each node of the parse tree, introducing variables of appropriate sort for subterms.
This introduction of variables causes the problem to be an SMT query. However, if we restrict
to grammars where all nonterminals generate only formulas (no terms), then it turns out
that we can encode the problem without additional variables.

Grammars can be made to have nonterminals generate only formulas by enumerating terms
in the derivation rules of atomic formulas. Furthermore, evaluation of atomic formulas over
models can be effected using just ground formulae, for a particular instantiation of the free
variables over a model, which can be modeled using Skolem constants.

The above yields constraints over b that are grounded, which is essentially Boolean satisfia-
bility. We implement the optimization and find it extremely effective on our benchmarks.

70

We implement the above technique in a custom synthesis engine (see Section 3.6.1) and
evaluate its efficacy in Section 3.6.

3.4.2 Counterexample Generators

FOSSIL uses three kinds of finite counterexample models to guide lemma synthesis. The
Type−1 model witnesses non-provability of the goal given the current set of synthesized
lemmas and makes the synthesis goal-directed. Type−2 models witness the invalidity of
lemmas proposed and guide synthesis towards producing valid lemmas. Finally, the Type−3
models witness non-inductiveness of lemmas proposed and guide synthesis towards producing
provable lemmas.

The Type−1 and Type−3 counterexamples are generated using the Counterexample module
as shown on lines 7 and 29 in Algorithm 3.1. These are obtained as a by-product of using
the SQI module for verification since it reduces the validity of a quantified formula φ to the
satisfiability of a quantifier-free formula ψ (see Section 3.2.4).

The generation of Type−2 models is more involved. We realize the BoundedCex module
which generates them using an SMT solver. Given a bound size on the size of the model, we
construct a formula that represents the existence of size-many elements u1, u2 . . . , usize such
that the valuation of functions (including recursively defined predicates) satisfies the axioms
and falsifies the given lemma. The key aspect of our construction is the notion of the rank
of (R, u) for every R ∈ Rrec and argument u in the domain of R. The rank of (R, u) is an
integer in the range [−1,∞) which we constrain to ensure that the valuation of recursively
defined predicates on a Type−2 model is consistent with their definitions interpreted using
lfp semantics.

Let us consider the simple case where we only have one recursively defined predicate R
which is unary and has the definition R(x) :=lfp ρ(x,R). Since there is only one recursively
defined predicate, we drop R from the notation for simplicity and simply refer to the rank of u
instead of the rank of (R, u). Assume that the definition ρ(x,R) refers to R over a particular
set of terms—say R(t1(x)), R(t2(x)), . . . R(tm(x)). The rank of u is an integer variable Ranku

whose value is in the range in the range [−1,∞). We then enforce the following constraints:
(a) R holds on u iff the rank of u is not −1, (b) if the base case of the definition holds then
the rank is 0, i.e., iff ρ(u,⊥) holds then the rank of u is 0, (c) if the rank of u is positive,
then the witnessing atomic formulae R(ti(u)) that make ρ(u,R) true are such that each ti

gets a smaller non-negative rank than the rank of u, and (d) if the rank of u is −1, then in
any set of witnessing atomic formulae R(ti(u)) we pick such that their truth would make
ρ(u,R) true, there is at least one ti whose rank is −1.

71

Intuitively, the rank of (R, u) mimics the iteration order of the usual iterative least fixpoint
computation of R at which the tuple u is “added” to R. It is easy to see that if we assign ranks
this way, i.e., assigning the rank of u to be the iteration number at which it is added to R
(and −1 if it is never added), then the ranks will satisfy the above constraints. Furthermore, if
an assignment of ranks satisfying the constraints exists, then we are assured that R evaluates
to the true least fixpoint. Finally, since we only want a bounded model the above constraints
can be expressed as a quantifier-free SMT query. We use this technique to produce true
counterexamples to lemmas.

Computing Least-Fixpoints versus Using Under-Approximations The reader may
wonder whether it is possible to use under-approximations of the least-fixpoint instead of
computing the precise lfp valuations for Type−2 counterexamples. After all, if a predicate
R holds in an under-approximation, then it certainly holds in the least-fixpoint semantics.
However, under-approximations will not work because of the presence of negation in two
ways. First, our lemmas and theorems can mention recursively defined functions/predicates
in negated form. In this case, computing an under-approximation of the lfp will not be
correct. For example, consider a lemma ∀x.R(x)⇒ S(x) for recursively defined predicates R
and S. Negating this lemma would require a model of R(x) ∧ ¬S(x). An under-approximate
computation of S will not work in this case as we may obtain models that do not satisfy this
negated formula. Second, negations are also needed in recursive definitions. Our general
theoretical treatment allows negations in layers. Such definitions do occur in our experiments.
For example, the definition of a binary tree (see Example 3.3) recursively requires the root
not to be present in the heaplets of subtrees rooted at the left and right children of the root.
This involves negation of the heaplet function htree which is recursively defined.

3.5 SOUNDNESS AND RELATIVE COMPLETENESS

The soundness of FOSSIL is clear from the problem description and the termination
conditions in Algorithm 3.1: the branch on line 19 is only taken when a lemma is proved
valid, and the loop condition on line 5 establishes that if FOSSIL terminates, it does so
with a sequence of lemmas that prove α. We can now ask whether the algorithm will always
find a sequence of lemmas in G that prove α if one exists. It turns out that FOSSIL is not
complete for the problem of sequential lemma synthesis. However, FOSSIL is complete with
respect to independent lemmas (see Definition 3.5). That is, if there is a set of independent
lemmas that prove α, then it is guaranteed that FOSSIL will find a sequential proof of α.

72

Theorem 3.3 (Relative completeness of FOSSIL with respect to independent lemmas). If α
is provable from A and D by a finite set of independent inductive lemmas in G in the sense
of Definition 3.5, then there is an instantiation depth k and a grammar height h such that
FOSSIL terminates and returns a sequence L of lemmas that proves α.

Proof. Assume that there exists some set of independent lemmas {L1, L2, . . . , Ln} that proves
α. Let us fix k and h to be such that every Li as well as the goal (given the lemmas) is
provable with a depth k instantiation, and the maximum height of any of the productions in
G that yield a lemma Li is h. We claim that FOSSIL with parameters k and h will terminate
having found a sequence of lemmas that prove α.

We induct on the number n of lemmas in the set. Since the algorithm is sound, if it
terminates there is clearly a sequence of lemmas that proves α. We establish that either
the algorithm will terminate with a proof of the goal, or at least one Li, 1 ≤ i ≤ n will be
eventually (at some finite time) chosen by the synthesis module, i.e., it cannot be that the
algorithm restarts FOSSIL with new parameters in line 16 or runs forever without choosing
one of the lemmas Li. If some Li is chosen by the synthesis module, since we know by our
choice of k that Li is provable with depth k instantiation, it will be added to Φα (see line 20)
before all the variables are reset, which reduces the problem to discovering at most n − 1

independent lemmas whereupon we will appeal to the inductive hypothesis.
It is clear from the definition of Gh that Lang(Gh) is finite for any h. Observe from the

description of the algorithm in Section 3.3.3 that in each round the candidate proposal L will
either: (i) be prevented from being proposed again in the inner loop (line 8) by the addition
of a Type−3 model, or (ii) be prevented from being proposed again permanently during the
execution of FOSSIL (with parameters k and h) because it was proved valid and added
to Φα or it was proved invalid using a Type−2 model. This eliminates the possibility that
the algorithm keeps on proposing lemmas that are not provable. It either finds a provably
valid lemma, or it has no further candidate lemmas to propose, and thus would restart the
algorithm with new parameters in line 16.

If it finds a valid lemma, the search space for the next round of synthesis is smaller (because
the discovered valid lemma will not be proposed). This can happen only finitely often.

This leaves us with the possibility that the algorithm reaches line 16 without finding a new
candidate lemma. In particular, this means that none of the Li satisfies the constraints in
line 8. We show that this cannot be the case, i.e., that at least one Li, 1 ≤ i ≤ n satisfies the
constraints (and is therefore a viable proposal for the synthesis module).

It is easy to see that each Li, 1 ≤ i ≤ n satisfies constraints 13 and 14 since the former
constraint is satisfied by any lemma valid in the FO-lfp theory defined by A and D, and

73

the latter is satisfied by any lemma that is provable by induction at depth k. Both of
these conditions are true of every Li. This leaves us with constraint 12. Assume for
the sake of contradiction that no lemma satisfies the constraint, i.e., there is a model M
(namely the current Type−1 model) such that M |= (A ∪ D ∪ {¬α} ∪ {Li})[Tk] for any
Li, 1 ≤ i ≤ n. This yields that M |= (A ∪ D ∪ {¬α} ∪ {Li | 1 ≤ i ≤ n})[Tk], which
contradicts our initial assumption that {L1, . . . , Ln} collectively prove α at depth k, i.e.,
(A ∪ D ∪ {¬α} ∪ {Li | 1 ≤ i ≤ n})[Tk] is unsatisfiable. Therefore some Li satisfies the
constraint on line 12 and will eventually be proposed, which concludes our proof. QED.

Completeness for Sequential Lemma Synthesis We provide an example to show that
FOSSIL is not complete for sequential lemma synthesis. They key obstacle is the Type−1
model that makes the lemma synthesis goal-directed.

Example 3.7. Consider the case where α can be proved using a sequence (L1, L2) of two
lemmas. Let L1 be provable on its own, L2 be provable assuming L1, and α is provable
assuming L2. At line 7 in Algorithm 3.1, L2 would be false on Type−1 since it helps prove α.
But there is nothing that prevents L1[Tk] from being true on Type−1 , so let us suppose that
it is true. If that is the case, then L2 might be selected by the algorithm and then quickly
dismissed since it cannot be proved valid without L1. We would then add a counterexample
for it on line 30 witnessing that L2 has no inductive proof. However, the Type−1 model has
not changed (we only recompute it when we find a valid lemma) and therefore L1 will never
be proposed as well. We cannot therefore guarantee that FOSSIL will find a proof of α.

There are several possibilities for extending FOSSIL to achieve completeness for sequential
lemma synthesis. We discuss some potential directions in the Technical Report for the
publication associated with this chapter [62].

3.6 IMPLEMENTATION AND EVALUATION

In this section, we describe our implementation and evaluation of FOSSIL. We also
compare with lemma synthesis tools over ADTs and Separation Logic. The version of the
code and data artifacts used in our experiments is available via ACM DL [63].

3.6.1 Implementation

We implement FOSSIL in Python, building the components given in Figure 3.1 using
Z3Py (an API for the SMT solver Z3 [11]) to handle the various SMT queries for verification

74

and generation of counterexamples. Our implementation covers the various external modules
as well as the main FOSSIL algorithm.

The first component is an implementation of the SQI module (see Section 3.2.4). As far as
we know, this is the first implementation of systematic quantifier instantiation [27, 50, 56]
that realizes a complete FO validity engine for quantified formulae using SMT. The second
component is an extension of the SQI engine that provides provability counterexamples (used
for Type−1 and Type−3 models). The third component is the bounded counterexample
generator which we implement using the technique described in Section 3.4.2.

The fourth component is an implementation of a custom synthesis engine (a SyGuS solver)
that uses constraint solvers (SMT) to synthesize expressions from a grammar given ground
constraints. We implement this based on the technique described in Section 3.4.1. As we
show in our experiments, reductions to off-the-shelf synthesis engines did not work well.
Our synthesis engine exploits the fact that constraints are grounded and carefully generates
constraints so that synthesis can be done using SMT solvers. These optimizations were
crucial to ensuring efficiency of the synthesis engine. The synthesis engine explores the space
of terms and the space of formulae independently, prioritizing exploring the space of formulae.
It only explores terms of depth 0 or 1 as we found this sufficient to solve all our benchmarks.

Finally, we implement the core FOSSIL algorithm utilizing the components above.

3.6.2 Research Questions

Our evaluation aims to answer the following Research Questions (RQs).

RQ1: How effective is FOSSIL in synthesizing inductive lemmas to prove theorems?
RQ2: How effective are countermodels in FOSSIL?
RQ3: How effective is our constraint-based synthesis approach in FOSSIL?

3.6.3 Benchmarks

We curate two classes of benchmarks. The first suite consists of 50 theorems that were
distilled from the work on VCDryad [56] repository5 which verifies heap manipulating
programs. VCDryad converts Dryad, a variant of separation logic, to FO+lfp. From about
450 VCs (Verification Conditions), we eliminated those that were provable using pure FO
reasoning, those that were provable by induction (using the theorem itself as the induction
hypothesis), or those that could be proved using frame reasoning [60]. The goal was to retain

5The repository can be found at https://madhu.cs.illinois.edu/vcdryad/examples/.

75

https://madhu.cs.illinois.edu/vcdryad/examples/

only those VCs that required lemma synthesis. From these, we distilled a set of theorems
(removing trivial reformulations) and added them to our suite. We also formulate several
theorems that capture static properties of data structures. Six more theorems were obtained
by modeling partial correctness of scalar programs with loops. We capture the computation
of the program as a linked list of configurations and use lfp to determine reachable states,
demanding that unsafe states are not reached. Table 3.1 shows the list of theorems that we
include in our suite. For example, ‘bst-leftmost’ requires proving that the leftmost node in a
binary search tree has the smallest key in the entire tree. We also include theorems about
linked lists, sorted linked lists, list segments, dags, binary search trees, maxheaps, etc. The
benchmarks obtained from scalar programs are labeled by the prefix ‘reachability’.

The second suite of benchmarks consists of 673 synthetic theorems that are automatically
generated using fixed recipes. The data structure is a dag/tree with a key field and data
fields d1, . . . , dn, all of type integer. The theorem requires proving that a predicate P holds
on the d1 field of the root of the tree. The predicates chosen were inspired by induction
exercises for undergraduate students in discrete math courses. The inductive lemma requires
stating the properties of several data fields. The data structures also satisfy other properties
based on structure as well as the key field (dag, tree, binary search tree, max heap, and trees
with parent pointers). The suite was obtained from combinations of predicates, the number
of data fields, and properties of data structures.

Lemma Grammars Since our lemmas are of the form L ≡ ∀x.R(x)→ ψ(x) we make the
universal quantifiers implicit, and the grammars only restrict the quantifier-free formula ψ.
For the first suite, we systematically generate grammars based only on the syntax of the
recursive definitions and the theorem. All variables x and all foreground constants from the
theorem are added to the grammar. All constants in the definitions and the theorem are
also added. We allow all terms over these variables and constants. For atomic formulae, we
add all relations (including recursively defined relations) over the foreground sort. If integers
appear in the theorem, we add equality and inequality for integer terms. If sets appear in the
theorem, we add membership and other set operators. The only Boolean connective allowed
is implication. We stratify the grammars by the complexity of formulae (primarily split
according to the inclusion or exclusion of set operations) to allow for efficient exploration.

For the second suite, we design the grammar automatically. We add the variables and
constants of the foreground sort from the theorem. We add 0 and the integer terms built
from key and the other data fields. The atomic formulae included are the data structure
relation, equalities/disequalities between foreground sort terms, and the fixed predicate P
per benchmark. Finally, we include implication and conjunction as Boolean operators.

76

Table 3.1: Experiment results of the FOSSIL tool. #P is the number of lemmas synthesized;
#V is the number of valid lemmas synthesized; T (s) is the runtime in seconds.

Theorem #P #V T (s)
dlist-list 1 1 1
slist-list 2 1 1
sdlist-dlist 2 1 2
sdlist-dlist-slist 4 2 3
listlen-list 1 1 0
even-list 3 1 1
odd-list 5 2 3
list-even-or-odd 11 4 124
lseg-list 7 1 5
lseg-next 6 1 6
lseg-next-dyn 1 1 1
lseg-trans 5 1 5
lseg-trans2 7 1 7
lseg-ext 12 1 12
lseg-nil-list 6 1 4
slseg-nil-slist 5 1 4
list-hlist-list 6 1 2
list-hlist-lseg 4 1 2
list-lseg-keys 7 1 4
list-lseg-keys2 7 1 4
rlist-list 2 1 2
rlist-black-height 21 7 125
rlist-red-height 20 7 124
cyclic-next 20 2 126
tree-dag 3 1 3

Theorem #P #V T (s)
bst-tree 2 1 4
maxheap-dag 2 1 3
maxheap-tree 2 1 3
tree-p-tree 2 1 3
tree-p-reach 14 2 17
tree-p-reach-tree 12 3 18
tree-reach 9 2 25
tree-reach2 4 1 7
dag-reach 5 1 20
dag-reach2 6 1 4
reach-left-right 12 3 40
bst-left 10 1 57
bst-right 8 1 104
bst-leftmost 39 10 167
bst-left-right 27 6 104
bst-maximal 5 1 5
bst-minimal 7 1 7
maxheap-htree-key 29 3 155
maxheap-keys 9 2 140
reachability 4 1 4
reachability2 2 1 2
reachability3 3 1 3
reachability4 2 1 2
reachability5 4 1 4
reachability6 4 1 3

3.6.4 RQ1: Effectiveness of FOSSIL in Proving Theorems

We study the effectiveness of our tool in solving both benchmark suites.

Benchmark Suite #1 Table 3.1 gives the names of the 50 theorems in Suite #1, along
with the total time taken by our tool to prove each theorem. We find that our tool solves all
benchmarks within 5 minutes per benchmark, splitting time between the grammar strata.
Guided by early empirical results, we put in an optimization of the general description of
FOSSIL in our tools by incrementing h but not k when we exhaust the given grammar
(line 16 in Algorithm 3.1). The table also reports the total number of lemmas synthesized
and the number of lemmas among those that were proved valid.

FOSSIL is effective on these benchmarks. The average time per theorem was 30s (with
a maximum of 167s). The total number of lemmas proposed varied from 1 (i.e., the first

77

proposed lemma was sufficient) to 39, with up to 10 valid lemmas discovered when solving
some benchmarks. Most benchmarks were solved with formula depth h = 3 and term
instantiation depth k = 1. For 14 benchmarks, the tool reached h = 4 and k = 1.

The tool finds interesting lemmas such as those characterizing properties of data structures,
and relating different structures (like lists and list segments), relating different constraints
on data structures, etc. We refer the reader to the Technical Report for the publication
associated with this chapter [62] for a sample of valid lemmas discovered in proving each
theorem. For example, for bst-left-right, the tool proposes 27 lemmas of which 6 were
proved valid, including complex lemmas such as

bst(x)⇒ (y ∈ hbst(x)⇒ minr(x) ≤ minr(y)) (3.7)
Here, bst(x) means x is the root of a binary search tree, and minr(x) denotes the minimum

key in the subtree rooted at x; both are recursively defined. The lemma states that for every
node y in a bst, the minimum key in the subtree of y is less than or equal to the minimum key
of the whole tree. While intuitively true for any bst, formal proof of this property requires
induction. Note that the synthesis engine itself has no context about the datastructure and
does not employ any inductive reasoning! It is simply an expression generator that uses the
rich counterexamples we provide to guess a formula that satisfies the various constraints.

Figure 3.2: Cumulative sum graph of FOSSIL on the synthetic benchmark suite of 673
theorems.

Benchmark Suite #2 Figure 3.2 contains a cumulative sum graph depicting the time
taken by our tool on the synthetic benchmarks. Our tool performs well, proving all 673
theorems within the timeout of 10 minutes. 628 of the benchmarks, approximately 93%, were
solved within one minute.

78

(a) Runtime comparison of FOSSIL vs. FOSSIL
with no Type−3 or Type−2 counterexamples.

(b) Runtime comparison of FOSSIL vs. FOSSIL
with no Type−2 counterexamples.

(c) Runtime comparison of FOSSIL vs. FOSSIL using CVC4Sy.

Figure 3.3: Ablation studies of the FOSSIL tool. The timeout is 1 hour. In 3.3a, 3.3b,
and 3.3c, the diagonal lines represent equal running time for both axes. Points on the
super-diagonal curves signify FOSSIL is 10 seconds slower than its ablated counterpart, while
points on the sub-diagonal curves signify FOSSIL is 10 seconds faster.

79

Figure 3.4: Comparison of lemma proposal counts by FOSSIL vs. FOSSIL without Type−2
counterexamples.

3.6.5 RQ2: Comparison to Synthesis without Use of Counterexamples

We test the efficacy of counterexamples by removing each kind during synthesis. We do not
ablate Type−1 counterexamples since proposed lemmas would be unrelated to the theorem
and a comparison is not meaningful. We perform ablation studies removing both Type−2
and Type−3 counterexamples or only removing Type−2 counterexamples.

Efficacy of Type−2 and Type−3 counterexamples: It is not possible to directly run our
synthesis engine without Type−2 and Type−3 counterexamples as the same invalid lemmas
can be continuously re-proposed. We hence modify our algorithm to perform the ablation
study. The algorithm differs from FOSSIL (Algorithm 3.1) in two ways. First, the Synthesize
module can skip solutions, proceeding to others. Second, when a lemma is not provable
(line 24 in Algorithm 3.1) we simply discard the lemma by asking the synthesis engine to skip
to the next solution. We do this until a valid lemma is found, at which point we move to the
outer loop (line 5) and attempt to prove the goal again. Of course, in this algorithm, we
also do not maintain sets of Type−2 or Type−3 counterexamples and only use the Type−1
counterexample in the synthesis query.

In our implementation, we integrate a version of FOSSIL with the state-of-the-art SyGuS
solver in CVC4 (CVC4Sy), providing only Type−1 counterexamples during synthesis. We
used the efficient streaming mode of CVC4Sy that can skip solutions. This mode generates a
stream of solutions to a synthesis query without repetition, and we simply skip along this
stream when we reject candidate lemmas. CVC4Sy is well-optimized, performing symmetry
and semantic reductions [64]. We used a timeout of 1 hour for the ablated algorithm.

80

Figure 3.3a compares the ablated tool against our tool (with all types of counterexamples)
on Suite #1 benchmarks. Apart from a few outliers where the lemmas proposed are simple,
FOSSIL with only Type−1 counterexamples performs drastically worse than FOSSIL with
all three counterexamples. 31/50 benchmarks timed out with the ablated algorithm. This
shows the efficacy of Type−2 and Type−3 counterexamples in guiding search.

We also perform this experiment with the synthetic benchmarks (Suite #2). FOSSIL using
only Type−1 counterexamples surprisingly solves only 1 out of the 673 benchmarks within
10 minutes. This again demonstrates the efficacy of Type−2 and Type−3 counterexamples.

Efficacy of Type−2 counterexamples We evaluate the efficacy of Type−2 countermodels
in FOSSIL by building a version of FOSSIL that does not use Type−2 counterexamples.

The ablated algorithm is similar to the one in Algorithm 3.1 except for the case where
a lemma is not provable (line 24). If a lemma cannot be proven valid, we do not try to
generate a Type−2 counterexample (lines 25- 27) and skip directly to generating a Type−3
counterexample (line 29). A Type−3 counterexample can always be generated since it
witnesses the non-provability of a lemma (see Section 3.3.2). It also ensures that such
unprovable lemmas will not be re-proposed.

Figure 3.3b shows the running time comparison between the FOSSIL tool and the FOSSIL

tool without Type−2 counterexamples. The ablated tool does not solve one of the benchmarks
and is slower in general for many benchmarks, especially those that require more than 10
seconds to solve. Type−2 countermodels seem to have a higher impact in pruning the search
space for more complex theorems. Figure 3.4 shows a comparison in the number of proposed
lemmas for FOSSIL vs. FOSSIL without Type−2 counterexample models. Fewer lemmas
are proposed for most benchmarks in the FOSSIL tool, showing the efficacy of the guidance
of Type−2 counterexamples.

3.6.6 RQ3: Comparison with CVC4 SyGuS Solver

To evaluate the efficacy of our custom synthesis tool that learns from first-order models
with grounded constraint solving, we compare our synthesis tool with CVC4Sy (in standard
mode with all counterexamples), utilizing the synthesis engines in an identical fashion to the
FOSSIL tool. We use a timeout of 1 hour for the ablated algorithm. Figure 3.3c shows the
results of this evaluation and indicates that as theorems become more complex, FOSSIL

with our custom constraint-based synthesis solver solidly outperforms FOSSIL with CVC4Sy
as the synthesis solver. Thus, exploiting the form of synthesis in this domain that has ground
constraints is useful.

81

3.6.7 Comparison with ADT/Separation Logic Tools

The idea of discovering inductive hypotheses to prove theorems is a problem that has been
studied in many logical contexts. We are not aware of any tools that synthesize inductive
lemmas for FO+lfp, especially ones that can handle foreground and background sorts as in
our setting.

Comparing tools that work for different logics (FO+lfp, algebraic datatypes, separation
logic) is inherently hard and poses several challenges: the logics being different, the hardness
of translating theorems between them, translation bloat, translations that make theorems
harder and required lemmas more complex, tools supporting only restricted fragments, and
so on. These make fair comparisons hard.

In this section however, we attempt to compare our tool with tools for algebraic datatypes
(ADTs) and separation logic on our benchmarks, making the best translation effort. Though
our tool performs much better than these tools on our benchmarks, this should not be
construed as evidence that the other tools are inferior in their native settings. Yet, as the
comparison below will show, solving theorems in FO+lfp effectively by reducing them to
tools for other logics does not seem possible. We also believe that incorporating our ideas
into lemma synthesis tools for these logics natively is an interesting future direction.

Comparison with Tools for Algebraic Datatypes Theoretically, the logic FO+lfp and
FO logic over algebraic datatypes are very different. In pure ADT logics, the universe is a
single universe while FO+lfp admits a multitude of universes. Furthermore, our benchmarks
are motivated by reasoning over pointer-based heaps that embed data structures, which are
different from pure mathematical algebraic datatypes (heaps admit a spaghetti of pointers
that embed overlapping data structures). Consequently, we find it impossible to encode our
benchmarks in a pure ADT logic.

However, when a first-order logic over ADTs includes uninterpreted functions (or higher-
order functions), we can find reasonable encodings. We can model locations using elements
of some ADT (say 0 with succ) or even a background theory of integers if supported. We
can model pointers using uninterpreted functions from locations to locations. Least fixpoint
definitions can be modeled in several ways. We choose one that does not involve specific
background sorts (such as true natural numbers) and instead uses the structure of ADTs.

We encode finite pointer-linked data structures such as linked lists and linked trees using
ADTs such as lists and trees, respectively, that store locations constituting the linked data
structure. Now, recursive definitions on ADTs can capture whether a list/tree of locations
corresponds to a linked list/tree by checking, recursively, that the relevant pointers (next ,

82

or left/right) relate the locations stored in the ADT correctly. Using a mild generalization
of this technique, we can encode recursively defined data structures of all kinds used in our
benchmarks (including list segments, cyclic lists, doubly linked lists, binary search trees, etc.)
in a fairly natural way.

We encoded all 50 benchmarks from Suite #1 into CVC4+ig [65] and ADTInd [66], both of
which use induction and lemma synthesis. CVC4+ig solved 1/50 benchmarks, and ADTInd
solved 8/50 benchmarks within 15 minutes. This demonstrates that our tool performs
significantly better on our benchmarks than reductions to these tools do.

Comparison with Separation Logic Tools We consider tools in the Separation Logic
Competition (SL-COMP) [67] (note that these tools do not have grammars for lemmas).

There are many restrictions imposed by the various divisions and tools that make encoding
our benchmarks challenging. None of the tools for the closest division qf_shid_entl support
conjunction of heap formulas that we require to encode our benchmarks. Also, some of our
benchmarks mention heaplets explicitly and thus are hard to encode.

We consider the solver SLS (Songbird+Lemma Synthesis) [68] that won the 2019 SL-COMP
competition for the qf_shid_entl division. SLS has support for synthesizing inductive
lemmas. As mentioned above, many of our examples cannot be translated faithfully into SLS.
We were able to encode and prove valid 14 of the 50 examples from Suite #1. There were
several examples that we could encode but which SLS was unable to prove (at least 8 such:
cyclic-next, list-even-or-odd, and the 6 program reachability examples).

83

Chapter 4: Predictable Verification using Intrinsic Definitions

In previous chapters we investigated the limitations of frameworks for verifying complex
specifications that use recursively defined functions and predicates. In particular, we tried
to automate away the creative task of inductive lemma synthesis in Chapter 3. We return
again to this setting of verifying heap manipulating programs over recursively defined heap
datastructures. In this chapter we propose a novel mechanism of defining data structures
using intrinsic definitions that avoids recursion and instead utilizes monadic maps satisfying
local conditions. We show that intrinsic definitions are a powerful mechanism that can capture
a variety of data structures naturally. We show that they also enable a predictable verification
methodology that allows engineers to write ghost code to update monadic maps and perform
verification using reduction to decidable logics. We evaluate our methodology using Boogie

and prove a suite of data structure manipulating programs correct.

4.1 INTRODUCTION

In computer science in general, and program verification in particular, classes of finite
structures (such as data structures) are commonly defined using recursive definitions (aka
inductive definitions). Proving that a set of structures is in such a class or proving that
structures in the class have a property is naturally performed using induction, typically
mirroring the recursive structure in its definition. For example, trees in pointer-based heaps
can be defined using the following recursive definition in first-order logic (FOL) with least
fixpoint semantics for definitions:

tree(x) ::=lfp x = Nil ∨
(
x ̸= Nil ∧ tree(l(x)) ∧ tree(r(x))

∧ x ̸∈ htree(l(x)) ∧ x ̸∈ htree(r(x)) ∧ htree(l(x)) ∩ htree(r(x)) = ∅
)

htree(x) ::=lfp ite (x = Nil , ∅, htree (l(x)) ∪ htree (r(x)) ∪ {x})

(4.1)

In the above, htree maps each location x in the heap to the set of all locations reachable
from x using l and r pointers, and the definition of tree uses this to ensure that the left
and right trees are disjoint from each other and the root. Definitions in separation logic are
similar (with heaplets being implicitly defined, and disjointness expressed using the separating
conjunction ’⋆’ [60, 69, 70]).

When performing imperative program verification, we annotate programs with loop invari-

The material in this chapter is entirely reproduced from the publication cited as [18] co-authored by the
author of this thesis, with minor changes.

84

ants and contracts for methods, and reduce verification to validation of Hoare triples of the
form {α}s{β}, where s is a straight-line program (potentially with calls to other methods
encoded using their contracts). The validity of each Hoare triple is translated to a pure logical
validity question, called the verification condition (VC). When α and β refer to data structure
properties, the resulting VCs are typically proved using induction on the structure of the
recursive definitions. Automation of program verification reduces to automating validity of
the logic in which the VCs are expressed.

Logics that are powerful enough to express rich properties of data structures are invariably
incomplete, not just undecidable, i.e., they do not admit any automated procedure that is
complete (guaranteed to eventually prove any valid theorem, but need not terminate on
invalid theorems). For instance, validity is incomplete for both first-order logic with least
fixpoints and separation logic. Consequently, though verification frameworks like Dafny [9]
support rich specification languages, validation of verification conditions can fail even for
valid Hoare triples. Automated verification engines hence support several heuristics resulting
in sound but incomplete verification.

When proofs succeed in such systems, the verification engineer is happy that automation
has taken the proof through. However, when proofs fail, as they often do, the verification
engineer is stuck and perplexed. First, they would crosscheck to see whether their annotations
are strong enough and that the Hoare triples are indeed valid. If they believe they are, they
do not have clear guidelines to help the tool overcome its incompleteness. Engineers are
instead required to know the underlying proof mechanisms/heuristics the verification system
uses in order to figure out why the system is unable to succeed, and figure out how to help
the system. For instance, for data structures with recursive definitions, the proof system may
just unfold definitions a few times, and the engineer must be able to see why this heuristic
will not be able to prove the theorem and formulate new inductively provable lemmas or
quantification triggers that can help. Such unpredictable systems that require engineers to
know their internal heuristics and proof mechanisms frustrate verification experience.

Predictable Verification In this chapter we seek an entirely new paradigm of predictable
verification. We want a technique where:

(a) the verification engineer is asked to provide upfront a set of annotations that help prove
programs correct, where these annotations are entirely independent of the verification
mechanisms/tools, and

(b) the program verification problem, given these annotations, is guaranteed to be decidable
(and preferably decidable using efficient engines such as SMT solvers).

85

The upfront agreement on the information that the verification engineer is required to
provide makes their task crystal clear. The fact that the verification is decidable given these
annotations ensures that the verification engine, given enough resources of time and space
(of course) will eventually return proving the program correct or showing that the program
or annotations are incorrect. There is no second-guessing by the engineer as the verification
will never fail on valid theorems, and hence they need not worry about knowing how the
verification engine works, or give further help. Note that the verification without annotations
can (and typically will be) undecidable.

Intrinsic Definitions of Data Structures In this chapter we propose an entirely new
way of defining data structures, called intrinsic definitions, that facilitates a predictable
verification paradigm for proving their maintenance. Rather than defining data structures
using recursion, like in equation (1) above (which naturally calls for inductive proofs and
invariably entails incompleteness), we define data structures by augmenting each location
with additional information using ghost maps and demanding that certain local conditions
hold between each location and its neighbors.

Intrinsic definitions formally require a set of monadic maps (maps of arity one) that associate
values to each location in a structure (we can think of these as ghost fields associated with
each location/object). We demand that the monadic maps on local neighborhoods of every
location satisfy certain logical conditions. The existence of maps that satisfy the local logical
conditions ensures that the structure is a valid data structure.

For example, we can capture trees in pointer-based heaps in the following way. Let
us introduce maps tree : Loc → Bool, rank : Loc → Q+ (non-negative rationals), and
p : Loc→ Loc (for “parent”), and demand the following local property:

∀x :: Loc.(tree(x)⇒((l(x) ̸= Nil ⇒ (tree(l(x)) ∧ p(l(x)) = x ∧ rank(l(x)) < rank(x)))

∧ (r(x) ̸= Nil ⇒ (tree(r(x)) ∧ p(r(x)) = x ∧ rank(r(x)) < rank(x)))

∧ ((l(x) ̸= Nil ∧ r(x) ̸= Nil)⇒ l(x) ̸= r(x))

∧ (p(x) ̸= Nil ⇒ (r(p(x)) = x ∨ l(p(x)) = x)))) (4.2)

The above demands that ranks become smaller as one descends the tree, that a node is
the parent of its children, and that a node is either the left or right child of its parent.

Given a finite heap, it is easy to see that if there exist maps tree, rank and p that satisfy
the above property, and if tree(l) is true for a location l, then l must point to a tree (strictly
decreasing ranks ensure that there are no cycles and existence of a unique parent ensures
that there are no “merges”). Furthermore, in any heap, if T is the subset of locations that

86

are roots of trees, then there are maps that satisfy the above property and have precisely
tree(l) to be true for locations in T .

Note that the above intrinsic definition does not use recursion or least fixpoint semantics.
It simply requires maps such that each location satisfies the local neighborhood condition.

Fix-What-You-Break Program Verification Methodology Intrinsic definitions are
particularly attractive for proving maintenance of structures when structures undergo muta-
tion. When a program mutates a heap H to a heap H ′, we start with monadic maps that
satisfy local conditions in the pre-state. As the heap H is modified, we ask the verification
engineer to also repair the monadic maps, using ghost map updates, so that the local
conditions on all locations are met in the heap in the post-state H ′.

For instance, consider a program that walks down a tree from its root to a node x and
introduces a newly allocated node n between x and x’s right child r. Then we would assume in
the precondition that the monadic maps tree, rank , and p exist satisfying the local condition
(2) above. After the mutation, we would simply update these maps so that tree(n) is true,
p(r) = n, p(n) = x, and rank(n) is, say, (rank(x) + rank(r))/2.

The annotations required of the user, therefore, are ghost map updates to locations such
that the local conditions are valid for each location. We will guarantee that checking whether
the local conditions holds for each location, after the repairs, is expressible in decidable logics.

We propose a modular verification approach for verifying data structure maintenance
that asks the programmer to fix what they break. Given a program to verify, we instead
verify an augmented program that keeps track of a ghost set of broken locations Br . Broken
locations are those that (potentially) do not satisfy the local condition. When the program
destructively modifies the fields at a location, it (and some of its neighbors, accessible using
pointers from the object) may not satisfy the local condition anymore. These get added to the
broken set. The verification engineer must repair the monadic maps on these broken locations
and ensure (through an assertion) that the local condition holds on them before removing
them from the broken set Br. However, while repairing monadic maps on a location, the
local condition on its neighboring locations may fail and get added to the broken set.

We develop a fix-what-you-break (FWYB) program verification paradigm, giving formal
rules of how to augment programs with broken sets, how users can modify monadic maps,
and fixed recipes of how broken sets are maintained in any program. In order to verify that a
method m maintains a data structure, we need to prove that if m starts with the broken set
being empty, it returns with the empty broken set. We prove this methodology sound, i.e.,
if the program augmented with broken sets and ghost updates is correct, then the original
program maintains the data structure properties mentioned in its contracts.

87

Decidable Verification of Annotated Programs The general idea of using local
conditions to capture global properties has been explored in the literature to reduce the
complexity of proofs (e.g., iterated separation in separation logic [60]; see Chapter 6). Intrinsic
definitions of data structures and the fix-what-you-break program verification methodology
are more specifically designed to ensure the key property of decidable verification of annotated
programs by avoiding both recursion/least-fixpoint definitions and avoiding even quantified
reasoning.

The verification conditions for Hoare triples involving basic blocks of our annotated
programs have the following structure. First, the precondition can be captured using
uninterpreted monadic functions that are implicitly assumed to satisfy the local condition
on each location that is not in the broken set Br (avoiding universal quantification). The
monadic map updates (repairs) that the verification engineer makes can be captured using
map updates. The postcondition of the ghost-code augmented program can, in addition
to properties of variables, assert properties of the broken set Br using logics over sets.
Finally, we show that capturing the modified heap after function calls can be captured
using parameterized map update theories, that are decidable [71]. Consequently, the entire
verification condition is captured in quantifier-free logics involving maps, parametric map
updates, and sets over combined theories. These verification conditions are hence decidable
and efficiently handled by modern SMT solvers1.

Intrinsic Definitions for Representative Data Structures and Verification in
Boogie Intrinsic definitions of data structures is a novel paradigm and capturing data
structures requires thinking anew in order to formulate monadic maps and local conditions
that characterize them.

We give intrinsic definitions for several classic data structures such as linked lists, sorted
lists, circular lists, trees, binary search trees, AVL trees, and red-black trees. These require
novel definitions of monadic maps and local conditions. We also show how standard methods
on these data structures (insertions, deletions, concatenations, rotations, balancing, etc.)
can be verified using the fix-what-you-break strategy and standard loop invariant/contract
annotations. We also consider overlaid data structures consisting of multiple data structures
overlapping and sharing locations. In particular, we model the core of an overlaid data
structure that is used in an I/O scheduler in Linux that has a linked list (modeling a FIFO
queue) overlaid on a binary search tree (for efficient search over a key field). Intrinsic
definitions beautifully capture such structures by compositionally combining the instrinsic

1Assuming of course that the underlying quantifier-free theories are decidable; for example, integer
multiplication in the program or in local conditions would make verification undecidable, of course.

88

definitions for each structure and a local condition linking them together. We show methods
to modify this structure are provable using fix-what-you-break verification.

We model the above data structures and the annotated methods in the low-level program-
ming language Boogie. Boogie is an intermediate programming language with verification
support that several high-level programming languages compile to for verification (e.g.,
C [72, 73], Dafny [9], Civl [74], Move [75]). These annotated programs do not use quanti-
fiers or recursive definitions, and Boogie is able to verify them automatically using decidable
verification in negligible time, without further user-help.

Contributions This chapter makes the following contributions:

• A new paradigm of predictable verification that asks upfront for programmatic anno-
tations and ensures annotated program verification is decidable, without reliance on
users to give heuristics and tactics.

• A novel notion of intrinsic definitions of data structures based on ghost monadic maps
and local conditions.

• A predictable verification methodology for programs that manipulate data structures
with intrinsic definitions following a fix-what-you-break (FWYB) methodology.

• Intrinsic definitions for several classic data structures, and fix-what-you-break annota-
tions for programs that manipulate such structures, with realization of these programs
and their verification using Boogie.

Outline This chapter is structured as follows. In Section 4.2 we define the notion of
heap datastructure we work with and develop our first main contribution, namely the
notion of intrinsic definitions for datastructures. In Section 4.3 we briefly define a small
while programming language and formalize the notion of correctness that we work with.
Importantly, we also formalize the notion of ghost code (Section 4.3.2) that we use our
study. In Section 4.4 we begin the development of our second main contribution, the Fix-
What-You-Break methodology. We show that FWYB ultimately reduces to an intuitive
programming discipline that we dub well-behaved programming, and prove the soundness of
our construction in Section 4.5. In Section 4.6 we illustrate a full example worked out in
the FWYB methodology and use it to develop the concepts of a language paradigm where
programs are well-behaved by design. We then apply this paradigm to several illustrative
case studies that highlight various aspects of programming in the FWYB methodology in
Section 4.7. Finally, we describe our implementation of the language paradigm as well

89

as FWYB in Boogie and discuss the result of evaluating our technique on a suite of
benchmarks.

4.2 INTRINSIC DEFINITIONS OF DATA STRUCTURES

In this section we present intrinsic definitions for data structures. We first define the notion
of a data structure in a pointer-based heap.

4.2.1 Data Structures

In this work we consider data structures defined using a class C of objects. The class C can
coexist with other classes, heaps, and data structures, potentially modeled and reasoned with
using other mechanisms. For technical exposition and simplicity, we restrict the technical
definitions to a single class of data structures over a class C.

A class C has a signature (S,F) consisting of a finite set of sorts S = {σ0, σ1 . . . , σn} and
a finite set of fields F = {f1, f2 . . . , fm}. We assume without loss of generality that the sort
σ0 represents the sort of objects of the class C, and we denote this sort by C itself. We use C
to model objects in the heap. The other “background” sorts, e.g., integers, are used to model
the values of the objects’ fields. Each field fi : C → σ is a unary function symbol and is used
to model pointer and data fields of heap locations/objects. We model Nil as a non-object
value and denote the sort C ⊎ {Nil} consisting of objects as well as the Nil value by C?.

A C-heap H is a finite first-order model of the signature of C. More formally, it is a
pair (O, I) where O is a finite set of objects interpreting the foreground sort C and I is an
interpretation of every field in F for every object in O.

Example 4.1 (C-Heap). Let C be the class consisting of a
pointer field next : C → C? and a data field key : C → Int .
The figure on the right represents a C-heap consisting of
objects O = {o1, o2} and the illustrated interpretation I for
next and key .

o1 o2 Nil

1 2

next next

key key

Figure 4.1: A C-Heap.

We now define a data structure. We fix a class C.

Definition 4.1 (Data Structure). A data structure D of arity k is a set of triples of the form
(O, I, o) such that (O, I) is a C-heap and o is a k-tuple of objects from O.

Informally, a data structure is a particular subset of C-heaps along with a distinguished
tuple of locations o in the heap that serve as the “entry points” into the data structure, such
as the root of a tree or the ends of a linked list segment.

90

Example 4.2 (Sorted Linked List). Let C be the class defined in Example 4.1. The data
structure of sorted linked lists is the set of all (O, I, o1) such that O contains objects o1, o2 . . . on
with the interpretation next(oi) = oi+1 and key(oi) ≤ key(oi+1) for every 1 ≤ i < n, and
next(on) = Nil . For example, let (O, I) be the C-heap described in Example 4.1. The triple
(O, I, o1) is an example of a sorted linked list. Here o1 is the head of the sorted linked list.

4.2.2 Intrinsic Definitions of Data Structures

We now propose a characterization of data structures using intrinsic definitions. Intrinsic
definitions consist of a set of monadic maps that associate (ghost) values to each object and
a set of local conditions that constrain the monadic maps on each location and its neighbors.
A C-heap is considered to be a valid data structure if there exists a set of monadic maps for
the heap that satisfy the local conditions.

Annotations using intrinsic definitions enable local and decidable reasoning for correctness of
programs manipulating data structures using the Fix-What-You-Break (FWYB) methodology,
which is described later in Section 4.4. We develop the core idea of intrinsic definitions below.

Ghost Monadic Maps We denote by CG = (S,F ∪ G) an extension of C with a finite set
of monadic (i.e., unary) function symbols G. We can think of these as ghost fields of objects.

The key idea behind intrinsic definitions is to extend a C-heap with a set of ghost monadic
maps and formulate local conditions using the maps that characterize the heaps belonging
to the data structure. The existence of such ghost maps satisfying the local conditions is
then the intrinsic definition. Definitions are parameterized by a multi-sorted first-order logic
L in which local conditions are stated. The logic has the sorts S and contains the function
symbols in F ∪ G, as well as interpreted functions over background sorts (such as + and <
on integers, and ⊆ on sets).

Definition 4.2 (Intrinsic Definition). Let C = (S,F) be a class. An intrinsic definition
IDS (y) over the class C is a tuple (G,L,LC , φ(y)) where:

1. G is a finite set of monadic map names and function signatures disjoint from F ,

2. L is a first-order logic over the sorts S containing the interpreted functions of the
background sorts as well as the function symbols in F ∪ G,

3. A local condition formula LC of the form ∀x : Loc. ρ(x) such that ρ is a quantifier-free
L-formula, and

4. A correlation formula φ(y) that is a quantifier-free L-formula over free variables y ∈ Loc.

91

We denote an intrinsic definition by (G,LC , φ(y)) when the logic L is clear from context.
In our work L is typically a decidable combination of quantifier-free theories [29, 30, 76],
containing theories of integers, sets, arrays [71], etc., supported effectively in practice by
SMT solvers [11, 12].

Definition 4.3 (Data Structures defined by Intrinsic Definitions). Let C = (S,F) be a
class and IDS (y) = (G,LC, φ(y)) be an intrinsic definition over C consisting of monadic
maps G, local condition LC and correlation formula φ. The data structure defined by IDS is
precisely the set of all (O, I, o) where there exists an interpretation J that extends I with
interpretations for the symbols in G such that O, J |= LC and O, J [y 7→ o] |= φ(y), where
[y 7→ o] denotes that the free variables y are interpreted as o.

Informally, given a data structure DS consisting of triples (O, I, o), an intrinsic definition
demands that there exist monadic maps G such that the C-heaps (O, I) in the data structure
can be extended with values for maps in G satisfying the local conditions LC , and the
entrypoints o are characterized in the extension by the quantifier-free formula φ.

Example 4.3 (Sorted Linked List). Recall the data structure of sorted linked lists defined
in Example 4.2. We capture sorted linked lists by an intrinsic definition SortedLL(y) using
monadic maps sortedll : C → Bool and rank : C → Q+ such that:

LC ≡ ∀x.
(
(sortedll(x) ∧ next(x) ̸= Nil)⇒
(sortedll(next(x)) ∧ rank(next(x)) < rank(x) ∧ key(x) ≤ key(next(x)))

)
φ(y) ≡ sortedll(y)

In the above definition the rank field decreases wherever sortedll holds as we take the next
pointer, and hence assures that there are no cycles. Observe that without the constraint on
rank , the triple ({o1, o2}, I, o1) where I = {next(o1) = o2, next(o2) = o1, key(o1) = key(o2) =

0} denoting a two-element circular list would satisfy the definition, which is undesirable.
Note that the above allows for a heap to contain both sorted lists as well as unsorted lists.

We are guaranteed by the local condition that the set of all objects where sortedll is true will
be the heads of sorted lists.

We can also replace the domain of ranks in the above definition using any strict partial
order, say integers or reals (with the usual < order on them), and the definition will continue
to define sorted lists. Well-foundedness of the order is not important as heaps are finite in
our work (see definition of C-heaps in Section 4.2.1)

92

P := x := Nil | x := y | v := be | y := x.f | v := x.d
| x.f := y | x.d := v | x := new C() | r := Function(t)
| skip | assume cond | return
| P ; P | if cond then P else P | while cond do P

cond := x = y | x ̸= y | be (Condition Expressions)

Figure 4.2: Grammar of while programs with recursion. x, y are variables denoting objects of
class C? (i.e., C objects or Nil), v, w are a background sort(s) variables, r, t denote variables
of any sort, f is a pointer field, d is a data field, and be is a expression of the background
sort(s).

4.3 PRELIMINARIES: PROGRAMS, CORRECTNESS, AND GHOST CODE

We describe here a few concepts that are relevant to our development of the FWYB
verification technique in Section 4.4. We recommend that the reader peruse the concepts
somewhat quickly following the prose (pausing perhaps for Examples) and return to the
formal definitions and statements when they are mentioned in the following Sections.

We begin by describing a while programming language and defining the verification problem
we study. We fix a class C = (S,F) throughout this section.

4.3.1 Programs, Contracts, and Correctness

Programs Figure 4.2 shows the programming language. Note that we have variables and
expressions over non-object sorts. Functions can return multiple outputs. We assume that
method signatures contain designated output variables and therefore the return statement
does not mention values.

Our language is safe (i.e., allocated locations cannot point to un-allocated locations) and
garbage-collected. Formally we consider configurations θ consisting of a store (map from
variables to values) and a heap along with an error state ⊥ to model error on a null dereference.
We denote that a formula α is satisfied on a configuration θ by writing θ |= α. We elide the
definition of a formal operational semantics for now as it is the usual one for pointer-based
programs over heaps. We provide the formal presentation in an addendum at the end of the
chapter.

Intrinsic Hoare Triples In this chapter we study verifying the maintenance of data
structure properties. Fix an intrinsic definition (G,LC , φ(y)) where G = {g1, g2 . . . , gk}. Let

93

z be the input/output variables for a program that we want to verify. We consider pre and
post conditions of the form

∃∃ g1, g2 . . . , gk. (LC ∧ φ(w) ∧ ψ(z)) (4.3)

where each gi is a ghost monadic map (unary function over locations), ψ is a quantifier-free
formula over z that can use the ghost monadic maps gi, and w is a tuple of variables from z

whose arity is equal to y. Note that the above has a second-order existential quantification
(∃∃) over function symbols g1, . . . , gk, and LC has first-order universal quantification over a
single location variable. Read in plain English, “ w points to a data structure (defined by the
LC and φ) such that the (quantifier-free) property ψ(z) holds”.
We study the validity of the following Hoare Triples:

⟨α(x) ⟩ P(x, ret : r) ⟨ β(x, r) ⟩ (4.4)

where α and β are pre and post conditions of the above form, P is a program, and x, r are
input and output variables for P respectively.

Example 4.4 (Running Example: Insertion into a Sorted List). Let SortedLL(y) =

(G,LC , sorted(y)) as in Example 4.3 where G = {sortedll , rank}. The following Hoare
triple says that insertion into a sorted list returns a sorted list:

⟨ ∃∃ sortedll , rank .LC ∧ sortedll(x) ⟩
sorted−insert(x, k, ret : x)

⟨ ∃∃ sortedll , rank .LC ∧ sortedll(x) ⟩

where x, r have type C, k has type Int and sorted−insert is the usual recursive method.

We now define the validity of Hoare Triples.

Definition 4.4 (Validity of Intrinsic Hoare Triples). An intrinsic triple ⟨α ⟩P ⟨ β ⟩ is valid if
for every configuration θ such that θ |= α, transitioning according to P starting from θ does
not encounter the error state ⊥, and furthermore, if θ transitions to θ′ under P , then θ′ |= β.

4.3.2 Ghost Code

In this chapter we consider the augmentation of procedures with ghost or non-executed
code. Ghost code involves the manipulation of a set of distinct ghost variables and ghost
fields, distinguished from regular or ‘user’ variables and fields. In program verification, ghost
code provides a programmatic way of constructing values/functions that witness a property.

94

Intuitively, ghost variables/fields cannot influence the computation of non-ghost variables/-
fields. Therefore, ghost variables and maps can be assigned values from user variables and
maps, but the reverse is not allowed. Similarly, when conditional statements or loops use
ghost variables in the condition, the body of the statement must also consist entirely of ghost
code. Simply, ghost code cannot control the flow of the user program. These conditions
can be checked statically. Finally, we also require that ghost loops and functions always
terminate since nonterminating ghost code can change the meaning of the original program.
Our definition is agnostic to the technique used to establish termination, however, we use
ranking functions to establish termination in our implementation in Dafny.

Fix a set of user variables VarU and ghost variables VarG. Also recall user fields F
and ghost fields/maps G introduced in Section 4.2.2. We formalize ghost code using a
grammar in Figure 4.3 which defines a ghost-code augmented language extending the original
programming language in Figure 4.2. The grammar for pure ghost code is similar to the
grammar for the original language P except that we do not have allocation or assume
statements, and loops/functions must always terminate. See prior literature for a more
detailed formal treatment of ghost code [77, 78, 79, 80].

Projection that Eliminates Ghost Code We now define the notion of ‘projecting out’
ghost code, which takes a program that contains ghost code and yields a pure user program by
eliminating all ghost code. Intuitively, the fact that ghost code does not affect the execution
of the underlying user program makes the projection operation sensible.

Fix a main method M with body Q0. Let Ni, 1 ≤ i ≤ k be a set of auxiliary methods
with bodies Qi that Q0 can call. Note that the bodies Q0 and Qi contain ghost code. Let us
denote a program containing these methods by [(M : Q0); (N1 : Q1) . . . (Nk : Qk)].

Definition 4.5 (Projection of Ghost-Augmented Code to User Code). The projection
of the ghost-augmented program [(M : Q0); (N1 : Q1) . . . (Nk : Qk)] is the user program
[(M̂ : Q̂0); (N̂1 : Q̂1) . . . (N̂k : Q̂k)] such that:

1. The input (resp. output) signature of M̂ is that of M with the ghost input (resp.
output) parameters removed. Formally, given a sequence of parameters x with some
elements in the sequence marked as ghost, we can define the projection as the sequence
formed by the non-continguous subsequence of parameters in x consisting of non-ghost
parameters.

2. Q̂0 is derived from Q0 by: (a) eliminating all ghost code, i.e., replacing yields of the
nonterminal GP in Figure 4.3 with skip, and (b) replacing each non-ghost function

95

P := x := Expr [VarU ,F] | y := x.f | x.f := y | z := new C()
| r := Func(t) r, t are variables in VarU ∪ VarG
(Functions can have ghost input/output parameters)
| GP
(GP are “pure” ghost programs)
| skip | assume cond | return
| P ; P | if cond then P else P | while cond do P

cond := BoolExpr [VarU ,F]

GP := a := Expr [VarU ∪ VarG,F ∪ G] | b := x.g | b := x.f
(Ghost variables can read from both user and ghost variables/maps)
| x.g := b | x.g := y
(Ghost maps can only be assigned values from ghost variables)
| s := GhostFun(v) s, v variables in VarG, GhostFun is always terminating
| skip | GP ; GP | if Gcond then GP else GP
| while Gcond do GP loop is always terminating

Gcond := BoolExpr [VarU ∪ VarG,F ∪ G]

Figure 4.3: Grammar of programs with ghost code. x, y, z are user variables VarU , a, b
are ghost variables VarG, f ∈ F is a user field, and g ∈ G is a ghost map. Notation
Expr [Vars ,Maps] denotes expressions over the vocabulary given by variables Vars and maps
Maps, similarly BoolExpr [Vars ,Maps] denotes boolean expressions. Termination for ghost
loops and functions can be established in any way.

call statement of the form r := Nj(t) with the statement s := N̂j(u), where u, s are
obtained from t, r by projecting out the elements corresponding to the ghost parameters
in the signature of Nj. Each Q̂i is derived from the corresponding Qi by a similar
transformation. Formally, we use the following recursive transformation:

Projection(GP) = skip

Projection(r := Func(t)) = s := ˆFunc(u)

u, s are obtained from t, r by projecting out

elements corresponding to ghost parameters

Projection(stmt) = stmt for all other statements

Projection(P1; P2) = Projection(P1) ; Projection(P2)

Projection(if cond then P1 else P2) = if cond then Projection(P1) else Projection(P2)

Projection(while cond do P) = while cond do Projection(P)

96

Properties of Projection We now show some results about projection.
Projection for Configurations Projection deals with two kinds of triples, one whose validity

is stated with respect to configurations that interpret ghost variables and maps, and one over
configurations that only interpret user variables and fields. Given a configuration C that
interprets ghost variables/maps, we denote by Ĉ the projection of that configuration to user
variables that simply eliminates all ghost interpretations. Conversely, given a configuration c
we say that C extends c with an interpretation for ghost variables/maps if Ĉ = c. We define
ˆbot = ⊥.
We assume that there is only one procedure M in the program for simplicity of presentation.

Recall that M can contain ghost code and M̂ is the projection of M that eliminates the
ghost code (with appropriately modified input/output parameters).

Lemma 4.1. Let C1 be a configuration that interprets ghost variables/maps. If M is a
“pure ghost” program, (i.e., a yield of GP in the grammar in Figure 4.3), then M always
terminates starting from C1.

The above lemma says that pure ghost programs always terminate. It follows directly
from the definition of ghost code which requires pure ghost loops and functions to be
terminating. QED.

Lemma 4.2. Let c be a configuration that does not interpret ghost variables/maps. If
M̂ (projected code that does not contain ghost code) terminates starting from c, then M

(which contains additional ghost code) must terminate starting from any configuration C

that extends c.

The above lemma says that the termination of the original user program is preserved by
any augmentation with ghost code. In a certain sense, it ‘lifts’ Lemma 4.1 to programs that
contain both user and ghost code.

Proof. The lemma follows from structural induction on the definition of projection, i.e., on
the structure of the grammar for the nonterminal P in Figure 4.3. The argument for basic
statements is trivial. For pure ghost programs the result follows from Lemma 4.1. The
argument for all compositions (sequential, conditional, loop) and function calls follows from
the induction hypothesis. QED.

Lemma 4.3. Let C1 be a configuration that interprets ghost variables/maps. If M is a “pure
ghost” program and M starting from C1 reaches some C2 and C2 ̸= ⊥, then Ĉ1 = Ĉ2.

97

The above lemma says that ghost code does not affect the values of user (non-ghost)
variables and maps. It follows trivially by structural induction on the GP grammar, using the
definition of operational semantics (Figure 4.17). The key observation is that GP syntactically
disallows non-ghost variables/maps to read from ghost variables/maps. QED.

We can similarly ‘lift’ the above lemma to programs that contain both user code and ghost
code.

Lemma 4.4. Let c be a configuration that does not interpret ghost variables/maps. If M̂
starting from c1 reaches some c2, then M starting from any configuration C1 that extends c1
must either reach ⊥ or some C2 that extends c2.

The above lemma says that augmentation with ghost code does not affect how the original
program executes.

Proof. As with Lemma 4.2, we proceed by structural induction on the grammar for P in
Figure 4.3. The argument for basic non-ghost statements follows trivially from the definition
of operational semantics. They key observation is that non-ghost statements do not affect
the values of ghost variables/maps (ensured by the syntactic restrictions). For pure ghost
programs the result follows from Lemma 4.3. The argument for all compositions (sequential,
conditional, loop) and function calls follows from the induction hypothesis. QED.

4.4 FIX WHAT YOU BREAK (FWYB) VERIFICATION METHODOLOGY

In this section we present the second main contribution of this chapter: the Fix-What-
You-Break (FWYB) methodology. As with the previous section, we fix a class C = (S,F)
throughout the presentation.

Overview of FWYB We develop the Fix-What-You-Break (FWYB) methodology in
three stages, in the following subsections. We give here an overview of the methodology and
the stages.

We start with triples of the form ⟨ ∃∃ g1, g2 . . . , gk. (LC ∧ φ ∧ α) ⟩ P ⟨ ∃∃ g1, g2 . . . , gk. (LC ∧
φ ∧ β) ⟩. In Stage 1 (Section 4.4.1) we remove the second-order quantification. We do
this by requiring the verification engineer to explicitly construct the gi maps in the post
state from the maps in the pre state using ghost code. We then obtain triples of the form
⟨LC ∧ φ ∧ α ⟩ PG ⟨LC ∧ φ ∧ β ⟩ where PG is an augmentation of P with ghost code that
updates the G maps.

98

Note that the LC in the contract universally quantifies over objects. In Stages 2 (Sec-
tion 4.4.2) and 3 (Section 4.4.3) we remove the quantification by explicitly tracking the
objects where the local conditions do not hold and treating them as implicitly true on all
other objects. We call this set Br the broken set. Intuitively, the broken set grows when
the program mutates pointers or makes other changes to the heap, and shrinks when the
verification engineer repairs the G maps using ghost code to satisfy the LC on the broken
objects. The specifications assume an empty broken set at the beginning of the program and
the engineer must ensure that it is empty again at the end of the program. However, they do
not have to track the objects manually. We develop in Stage 3 (Section 4.4.3) a discipline
for writing only well-behaved manipulations of the broken set. This reduces the problem to
triples of the form ⟨φ ∧ α ⟩ PG,Br ⟨φ ∧ β ⟩, where PG,Br contains ghost code for updating
both G and Br . Note that these specifications are quantifier-free, and checking them can be
effectively automated using SMT solvers [11, 12].

4.4.1 Stage 1: Removing Existential Quantification over Monadic Maps using Ghost Code

Consider an intrinsic Hoare Triple
⟨ ∃∃ g1, g2 . . . , gk. (LC ∧ φ ∧ α) ⟩ P ⟨ ∃∃ g1, g2 . . . , gk. (LC ∧ φ ∧ β) ⟩ (4.5)

Read as a proof obligation, the precondition says that there exist maps {gi} satisfying
some properties, and the postcondition says that we must show the existence of maps {gi}
satisfying the post state properties.

We remove existential quantification by re-formulating the problem: assuming that we are
given the maps {gi} as part of the pre state such that they satisfy LC ∧ φ ∧ α, we ask the
verification engineer to compute the {gi} maps in the post state satisfying LC ∧ φ ∧ β. The
engineer computes the post state maps by taking the given pre state maps and ‘repairing’ them
on an object whenever the program breaks local conditions on that object. The repairs are
done using ghost code, which is a common technique in verification literature [77, 78, 79, 80].

Formally, fix an intrinsic data structure (G,LC , φ). We extend the class signature C =

(S,F) to CG = (S,F∪G) and treat the symbols in G as ghost fields of objects of class C in pro-
grams. Performing the above transformation reduces the problem to proving triples of the form

⟨LC ∧ φ ∧ α ⟩ PG ⟨LC ∧ φ ∧ β ⟩ (4.6)
where there is no existential quantification over G and PG is an augmentation of P with ghost
code that updates the G maps. The following proposition captures the correctness of this
reduction:

Proposition 4.1. Let ψpre and ψpost be quantifier-free formulae over F∪G. If the ∃∃-free triple

99

⟨LC ∧ψpre ⟩ PG ⟨LC ∧ψpost ⟩ is valid then ⟨ ∃∃g1, g2 . . . , gk.LC ∧ψpre ⟩ P ⟨ ∃∃g1, g2 . . . , gk.LC ∧
ψpost ⟩ is valid 2, where P is the projection of PG obtained by eliminating ghost code.

We wish to focus the presentation in this section on the development of the methodology
itself as well as the statements of the soundness results. We hence defer a detailed proof to
Section 4.5 and only furnish a gist here.

Proof Gist. The first Hoare triple shows that if we are given any maps gi (implicitly encoded
as values of ghost fields) that satisfy LC in the pre-state, then the program with ghost code
computes a modified version of these maps such that the LC is holds in the post-state. Surely
then, if there was a set of maps gi that satisfied LC in the pre-state, there will exists a set of
maps g′i that satisfy LC in the post-state. QED.

We note a point of subtlety about the reduction in this stage here: the simplified triple
eliminates existential quantification over G by claiming something stronger than the original
specification, namely that for any maps {gi} such that ψpre is satisfied in the pre state, there
is a computation that yields corresponding maps in the post state such that ψpost holds. The
onus of coming up with such a computation is placed on the verification engineer.

4.4.2 Stage 2: Relaxing Universal Quantification using Broken Sets

We turn to verifying programs whose pre and post conditions are of the form LC ∧ γ,
where LC ≡ ∀z. ρ(z) is the local condition. Consider a program P that maintains the data
structure. The local conditions are satisfied everywhere in both the pre and post state of P .
However, they need not hold everywhere in the intermediate states. In particular, P may call
a method N which may neither receive nor return a proper data structure. To reason about
P modularly we must be able to express contracts for methods like N . To do this we must be
able to talk about program states where only some objects may satisfy the local conditions.

Broken Sets We introduce in programs a ghost set variable Br that represents the set of
(potentially) broken objects. Intuitively, at any point in the program the local conditions
must always be satisfied on every object that is not in the broken set. Formally, for a program
P we extend the signature of P with Br as an additional input and an additional output.
We also write pre and post conditions of the form (∀z /∈ Br . ρ(z)) ∧ γ to denote that local
conditions are satisfied everywhere outside the broken set, where γ can now use Br . In
particular, given the Hoare triple

2Here the notion of validity for both triples is given by Definition 4.4, where configurations are interpreted
appropriately with or without the ghost fields.

100

⟨ (∀z. ρ(z)) ∧ α ⟩ PG(x, ret : y) ⟨ (∀z. ρ(z)) ∧ β ⟩ (4.7)

from Stage 1, we now reduce the problem to proving the following triple valid:

⟨ (∀z /∈ Br . ρ(z)) ∧ α ∧ Br = ∅ ⟩ PG,Br(x,Br , ret : y,Br) ⟨ (∀z /∈ Br . ρ(z)) ∧ β ∧ Br = ∅ ⟩
(4.8)

where Br is a ghost input variable of the type of set of objects and PG,Br is an augmentation of
P with ghost code that computes the G maps as well as the Br set satisfying the postcondition.
P may also call other methods N with bodies Q. We similarly extend the input and

output signatures of the called methods and use the broken set to write appropriate contracts
for the methods, introducing triples of the form ⟨ (∀z /∈ Br . ρ(z)) ∧ αN ⟩ QBr(s,Br , ret :

r,Br) ⟨ (∀z /∈ Br . ρ(z)) ∧ βN ⟩. Again, QG,Br is an augmentation of Q with ghost code that
updates G and Br .

For the main method that preserves the data structure property, the broken set is empty at
the beginning and end of the program. However, called methods or loop invariants can talk
about states with nonempty broken sets. We require the verification engineer to write ghost
code that maintains the broken set accurately. The soundness of this reduction is captured
by the following Proposition:

Proposition 4.2. Let α and β be quantifier-free formulae over F ∪ G (they cannot mention
Br). If ⟨ (∀z /∈ Br . ρ(z))∧α∧Br = ∅ ⟩ PG,Br (x,Br , ret : y,Br) ⟨ (∀z /∈ Br . ρ(z))∧β∧Br = ∅ ⟩
is valid then ⟨ (∀z. ρ(z))∧α ⟩ PG(x, ret : y) ⟨ (∀z. ρ(z))∧β ⟩ is valid, where PG is the projection
of PG,Br obtained by eliminating the statements that manipulate Br .

The proof of this proposition is similar to the proof of Proposition 4.1, except that
projections only eliminate Br . We provide a detailed proof in Section 4.5.

4.4.3 Stage 3: Eliminating the Universal Quantifier for Well-Behaved Programs

We consider triples of the form

⟨ (∀z /∈ Br . ρ(z)) ∧ α ⟩ PG,Br(x,Br , ret : y,Br) ⟨ (∀z /∈ Br . ρ(z)) ∧ β ⟩ (4.9)

where PG,Br is a program augmented with ghost updates to the G-fields as well as the Br set,
and α, β are quantifier-free formulae that can also mention the fields in G and the Br set. In
this stage we would like to eliminate the quantified conjunct entirely and instead ask the
engineer to prove the validity of the triple

{α} PG,Br(x,Br , ret : y,Br) {β} (4.10)

101

However, the above two triples are not, in general, equivalent (as broken sets can be
manipulated wildly). In this section we define a syntactic class of well-behaved programs
that force the verification engineer to maintain broken sets correctly, and for such programs
the above triple are indeed equivalent. For example, for a field mutation, well-behaved
programs require the engineer to determine the set of impacted objects where local conditions
may be broken by the mutation. The well-behavedness paradigm then mandates that the
engineer add the set of impacted objects to the broken set immediately following the mutation
statement. Similarly, well-behaved programs do not allow the engineer to remove an object
from the broken set unless they show that the local conditions hold on that object. The
imposition of this discipline ensures that programmers carefully preserve the meaning of the
broken set (i.e., objects outside the broken set must satisfy local conditions). This allows for
the quantified conjunct in the triple obtained from Stage 2 to be dropped since it always
holds for a well-behaved program. Let us look at such a program:

Example 4.5 (Well-Behaved Sorted List Insertion). We use the running example (Exam-
ple 4.4) of insertion into a sorted list. We consider a snippet where the key k to be inserted lies
between the keys of x and next(x) (which we assume is not Nil). We ignore the conditionals
that determine next(x) ̸= Nil and key(x) ≤ k ≤ key(next(x)) for brevity.

We first relax the universal quantification as described in Stage 2 (Section 4.4.2) and
rewrite the pre and post conditions to (∀ z /∈ Br .LC (z)) ∧ sortedll(x) ∧ Br = ∅. Making the
first conjunct implicit, we write the following program that manipulates the broken set in a
well-behaved manner. We show the value of Br through the program in comments:

pre: sortedll(x) ∧ Br = ∅
post: sortedll(x) ∧ Br = ∅
assert x /∈ Br;
assume LC(x);
y := x.next; // {}
z := new C();
Br := Br ∪ {z}; // {z}
z.key := k;
Br := Br ∪ {z}; // {z}
z.next := y;
Br := Br ∪ {z}; // {z}

z.sortedll := True;
Br := Br ∪ {z}; // {z}
x.next := z;
Br := Br ∪ {x}; // {x,z}
z.rank := (x.rank + y.rank)/2;
Br := Br ∪ {z}; // {x,z}
// x and z satisfy LC
assert LC(z);
Br := Br \ {z}; // {x}
assert LC(x);
Br := Br \ {x}; // {}

We depict the statements enforced by the well-behavedness paradigm in pink and the ghost
updates written by the verification engineer in blue. Observe that the paradigm adds the
impacted objects to the broken set after each mutation and allocation. Determining the
impact set of a mutation is nontrivial; we show how to construct them in Section 4.6. Note
also that to remove x from the broken set we must show LC (x) holds (assert followed by

102

removal from Br). Finally, we see at the beginning of the snippet that if we show x /∈ Br

then we can infer that LC (x) holds. This follows from the meaning of the broken set.

Putting it All Together. The above program corresponds to the program PG,Br obtained
from the Stage 3 reduction, consisting of ghost updates to the G maps and Br . Since it is well-
behaved and satisfies the contract ⟨ sortedll(x)∧Br = ∅ ⟩ PG,Br ⟨ sortedll(x)∧Br = ∅ ⟩ we can
conclude that it satisfies the contract ⟨ (∀z /∈ Br . ρ(z)) ∧ sortedll(x) ∧ Br = ∅ ⟩ PG,Br ⟨ (∀z /∈
Br . ρ(z)) ∧ sortedll(x) ∧ Br = ∅ ⟩. Using Propositions 4.1 and 4.2 we can project out all
augmented code and conclude that the triple given in Example 4.4 with the user’s original
program and intrinsic specifications is valid! In this way, using FWYB we can verify programs
with respect to intrinsic specifications by verifying augmented programs with respect to
quantifier-free specifications. The latter can be discharged efficiently in practice using SMT
solvers [11, 12] (see Section 4.4.4).

We dedicate the rest of this section to developing the general theory of well-behaved programs.

Rules for Constructing Well-Behaved Programs We define the class of well-behaved
programs using a set of rules. We first introduce some notation.

We distinguish the triples over the augmented programs and quantifier-free annotations by
{ψpre}P {ψpost}, with {} brackets rather than ⟨ ⟩. ⊢ {ψpre}P {ψpost} denotes that a triple is
provable. Our theory is agnostic to the underlying mechanism for proving triples correct (we
use the off-the-shelf verification tool Boogie in our evaluation). However, we assume that
the mechanism is sound with respect to the operational semantics. We denote that a snippet
P is well-behaved by ⊢WB P . We also denote that LC holds on a single object x by LC (x).

Figure 4.4 shows the rules for writing well-behaved programs. We only explain the
interesting cases here.

Mutation. Since mutations can break local conditions, we must grow the broken set. Let
A be a finite set of object-type terms over x such that for any z /∈ A, if LC (z) held before
the mutation, then it continues to hold after the mutation. We refer to such a set A as an
impact set for the mutation, and we update Br after a mutation with its impact set. The
impact set may not always be expressible as a finite set of terms, but this is indeed the case
for all the intrinsically defined data structures we study in this chapter. We show how to
construct impact sets in Section 4.6.

Allocation. Allocation does not modify the heap on any existing object. Therefore, we
simply update the broken set by adding the newly created object x (see Example 4.5).

Assert LC and Remove. This rule enables shrinking the broken set once the engineer
fixes the local conditions on a broken location. The snippet assert LC(x); Br := Br\{x} in

103

Example 4.5 uses this rule. Informally, the verification engineer is required to show that
LC (x) holds before removing x from Br .

Infer LC Outside Br. Recall that for well-behaved programs we know implicitly that
∀x /∈ Br . ρ(x) holds. This rule allows us to instantiate this implicit fact on objects that we
can show lie outside the broken set. The snippet assert x/∈Br; assume LC(x) in Example 4.5
uses this rule.

We show that the above rules are sound for the reduction in Stage 3:

Proposition 4.3. Let [(M : P); (N1 : Q1) . . . , (Nk : Qk)] be a program (which can use
G and Br) such that ⊢WB P and ⊢WB Qi, 1 ≤ i ≤ k. Let α and β be quantifier-free
formulae over F ∪ G which can use Br . If {α} P (x,Br , ret : y,Br) {β} is valid, then
⟨ (∀z /∈ Br . ρ(z)) ∧ α ⟩ P (x,Br , ret : y,Br) ⟨ (∀z /∈ Br . ρ(z)) ∧ β ⟩ is valid.

We prove the above proposition by structural induction on the rules in Figure 4.4. We
provide the proof in Section 4.5.

In the above presentation we use only one broken set for simplicity of exposition. Our
general framework allows for finer-grained broken sets that can track breaks over a partition
on the local conditions. For example, in Section 4.7.5 we verify deletion in an overlaid data
structure consisting of a linked list and a binary search tree using two broken sets: one each
for the local conditions of the two component data structures.

4.4.4 Generating Quantifier-Free Verification Conditions

We state at several points in this chapter that verifying augmented programs with quantifier-
free specifications reduces to validity over combinations of quantifier-free theories. However,
this is not obvious. Unlike scalar programs, quantifier-free contracts do not guarantee
quantifier-free verification conditions (VCs) for heap programs. In particular, commands such
as allocation and function calls pose challenges. However, we show that in our case it is indeed
possible to obtain quantifier-free VCs. At a high level, our solution transforms the given
heap program into a scalar program that explicitly encodes changes to the heap. Specifically,
we show an encoding for the field mutation, allocation, and function call statements.

Modeling Field Mutation As described earlier, we model the monadic maps and fields as
updatable maps [71]. Formally, we introduce a map Mf (also called an array in SMT solvers
like Z3 [11]) for every field/monadic map f . We then encode the commands for field lookup
and mutation as map operations, e.g., the mutation x.f := y is encoded as Mf [x] := y.

104

Skip/Assignment/Lookup/Return

⊢WB s where s is of the form
skip, x:=y, x:=y.f, or return

Mutation

⊢ { z /∈ A ∧ LC(z) ∧ x ̸= Nil } x.f := v {LC(z) }
⊢WB x.f := v ; Br := Br ∪A

where A is a finite set of location terms over x

Allocation

⊢WB x := newC() ; Br := Br ∪ {x}

Function Call

⊢WB y,Br := Function(x,Br)

Infer LC Outside Br

⊢WB if (x ̸= Nil ∧ x /∈ Br) then assumeLC(x)

Assert LC and Remove

⊢WB if LC(x) then Br := Br \ {x}

Composition

⊢WB P ⊢WB Q

⊢WB P ; Q

If-Then-Else

⊢WB P ⊢WB Q

⊢WB if cond P else Q
where cond does not mention Br

While

⊢WB P

⊢WB while cond do P
where cond does not mention Br

Figure 4.4: Rules for constructing well-behaved programs. Local condition formula
instantiated at x is denoted by LC (x). The statement (if cond thenS) is sugar for
(if cond thenS else skip).

Modeling Allocation We model programs in a safe garbage-collected programming
language. We introduce a ghost global variable Alloc to model the allocated set of objects.
We then add several assume statements throughout the program. Specifically, we assume for
every program parameter of type Object, the parameter itself as well as the values of the
monadic maps of type Object/Set-of-Objects on the parameter are all contained in Alloc. In
Example 4.5, we add the assumptions x ∈ Alloc and next(x) ̸= Nil ⇒ next(x) ∈ Alloc. If we
had a monadic map hslist corresponding to the heaplet of the sorted list, we would also add
the assumption hslist(x) ⊆ Alloc. Similarly, whenever an object is dereferenced on a field of
type Object/Set-of-Objects in the program, we add an assumption that the resulting value
is contained in Alloc. Note that these are quantifier-free assumptions. They can be added
soundly since they are valid under the semantics of the underlying language.

We then model allocation by introducing a new object to Alloc and ensure that the default
values of the various fields on the newly allocated object belong to Alloc. These constraints
can be expressed using a quantifier-free formula over maps.

Modeling Heap Change Across Function Calls The main challenge in modeling
function calls is to ensure the ability to do frame reasoning. To do this, we extend the

105

programming language with a modified set annotation for methods. We require the modified
set to be a term of type Set-of-Objects that is constructed using object variables in the current
scope and monadic maps over them. In the case of our running example (Example 4.4), we
would add a monadic map hslist of type Set-of-Objects corresponding to the heaplet of the
sorted list and annotate the program with hslist(x) as the modified set. Figure 4.6 shows the
full version of sorted list insertion with the modified set annotation.

Given a modified set Mod, we model changes to the heap across a function call by
introducing new maps corresponding to the various fields (including monadic maps) after the
call. We then add assumptions that the values of the new maps are equal to the values of the
maps before the call on all locations that do not belong to the modified set Mod. Although
this constrains the maps on unboundedly many objects, it can be written without quantifiers
by using pointwise operators on maps [71]. Formally, for a field f modeled as a map Mf , we
introduce a new map M ′

f and update Mf as:

Mf [x] := ite(x ∈ Mod, M ′
f [x], Mf [x]) (4.11)

The above update can be expressed using pointwise operators as Mf := ite(Mod,M ′
f ,Mf),

where the ite operator is applied pointwise over the maps Mod, Mf , and M ′
f . The value of

the field f on an object x after the call will then be equal to x.f before the call if x was not
modified, and a havoc-ed value given by M ′

f otherwise. Pointwise operators are supported by
the generalized array theory [71] whose quantifier-free fragment is decidable.

Program verifiers like Boogie [81] offer VC generation frameworks that are amenable to
the modeling described in this section. Indeed, our implementation of the IDS/FWYB
methodology described in Section 4.8.1 uses Boogie.

4.5 SOUNDNESS OF FWYB

In this section we detail the proofs of soundness for the various stages of FWYB described
in Section 4.4 and prove our central theoretical result on the soundness of FWYB. We first
recall some lemmas regarding projection for ghost code (Section 4.3.2).

Lemma 4.2. Let c be a configuration that does not interpret ghost variables/maps. If
M̂ (projected code that does not contain ghost code) terminates starting from c, then M

(which contains additional ghost code) must terminate starting from any configuration C

that extends c.

The lemma says that the termination of the original user program is preserved by any
augmentation with ghost code.

106

Lemma 4.4. Let c be a configuration that does not interpret ghost variables/maps. If M̂
starting from c1 reaches some c2, then M starting from any configuration C1 that extends c1
must either reach ⊥ or some C2 that extends c2.

This lemma says that augmentation with ghost code does not affect how the original
program executes.

PROOF OF PROPOSITION 4.1

We can state the proposition simply as follows: if ⟨LC ∧ ψpre ⟩M ⟨LC ∧ ψpost ⟩ is valid,
then ⟨ ∃g1, g2 . . . , gk.LC ∧ ψpre ⟩ M̂ ⟨ ∃g1, g2 . . . , gk.LC ∧ ψpost ⟩ is valid.

Fix configurations (without ghost state) c1, c2 such that c1 satisfies ∃g1, g2 . . . , gk.LC ∧ψpre

and M̂ starting from c1 reaches c2. To show that the given Hoare triple for M̂ is valid, we
must establish that c2 is not ⊥, and further that c2 satisfies ∃g1, g2 . . . , gk.LC ∧ ψpost .

Since c1 |= ∃g1, g2 . . . , gk.LC ∧ ψpre , there exists a configuration (taken as a model)
extending c1, say C1, such that C1 |= LC ∧ ψpre (we assume a reasonable semantics for
second-order logic). First, using Lemma 4.2 we have that M starting from C1 must terminate.
Further, since the triple ⟨LC ∧ ψpre ⟩M ⟨LC ∧ ψpost ⟩ is valid, it must be the case that M
starting from C1 reaches some C2 such that C2 ̸= ⊥ and C2 |= LC ∧ ψpost .

We now use Lemma 4.4 to conclude that Ĉ2 = c2. Since C2 ̸= ⊥, we have that c2 ̸=
⊥. Further, since C2 |= LC ∧ ψpost , we have from the semantics of the logic that C2 |=
∃g1, g2 . . . , gk.LC ∧ ψpost .

Observe that the formula ∃g1, g2 . . . , gk.LC ∧ ψpost is stated over the common vocabulary
of C2 and c2, where the interpretations of the two configurations agree. Therefore, we can
conclude that c2 |= ∃g1, g2 . . . , gk.LC ∧ ψpost . This concludes the proof. QED.

PROOF OF PROPOSITION 4.2

Recall that Proposition 4.2 is about the introduction/elimination of the broken set variable
Br . It similar to Proposition 4.1, except that we consider only Br as ghost and no other
variables/maps. Formally, if ⟨ (∀z /∈ Br . ρ(z)) ∧ α ∧ Br = ∅ ⟩ PG,Br (x,Br , ret : y,Br) ⟨ (∀z /∈
Br . ρ(z)) ∧ β ∧ Br = ∅ ⟩ is valid then we must show that ⟨ (∀z. ρ(z)) ∧ α ⟩ PG(x, ret :

y) ⟨ (∀z. ρ(z)) ∧ β ⟩ is valid.
The proof of this proposition follows the pattern of the proof of Proposition 4.1 above,

with the appropriate modification to the definition of what is considered ghost. Repeating
the arguments in the above proof appropriately, we obtain that if

107

⟨ (∀z /∈ Br . ρ(z)) ∧ α ∧ Br = ∅ ⟩ PG,Br(x,Br , ret : y,Br) ⟨ (∀z /∈ Br . ρ(z)) ∧ β ∧ Br = ∅ ⟩

is valid, then

⟨ ∃Br .
(
(∀z /∈ Br . ρ(z)) ∧ α ∧ Br = ∅

)
⟩ PG(x, ret : y) ⟨ ∃Br .

(
(∀z /∈ Br . ρ(z)) ∧ β ∧ Br = ∅

)
⟩

is valid. This triple can be simplified to ⟨ (∀z. ρ(z)) ∧ α ⟩ PG(x, ret : y) ⟨ (∀z. ρ(z)) ∧ β ⟩,
which concludes the proof.

PROOF OF PROPOSITION 4.3

Given a well-behaved program P such that {α} P {β} is valid, we must show that
⟨ (∀z /∈ Br . ρ(z)) ∧ α ⟩ P ⟨ (∀z /∈ Br . ρ(z)) ∧ β ⟩ is valid.

The proof proceeds by an induction on the nesting depth of method calls in a trace of the
program P . We elide this level of induction here because it is routine. Importantly, given a
particular execution of the program P , we must show that the claim holds, assuming it holds
for all method calls occurring in the execution. We show this by structural induction on the
proof of well-behavedness of P (i.e., on the rules in Figure 4.4).

There are several base cases.
Skip/Assignment/Lookup/Return There is nothing to show for skip, assignment,

lookup, or return statements. These do not change the heap at all and the rule does not update
Br either, therefore if ⟨α ⟩ stmt ⟨ β ⟩ is valid then certainly ⟨ (∀z /∈ Br . ρ) ∧ α ⟩ stmt ⟨ (∀z /∈
Br . ρ) ∧ β ⟩ is valid.

Mutation The claim is true for the mutation rule since by the premise of the rule we
update the broken set with the impact set consisting of all potential objects where local
conditions may not hold.

Function Call Here we simply appeal to the induction hypothesis.
Allocation We refer to our operational semantics, which ensures that no object points

to a freshly allocated object. Therefore, the allocation of an object could have only broken
the local conditions on itself at most.

Infer LC Outside Br There is nothing to prove as Br is not altered.
Assert LC and Remove The claim holds for this rule by construction. If LC holds

everywhere outside Br , and we know that LC (x) holds, then we can conclude that LC holds
everywhere outside Br \ {x}.

It only remains to show that the claim holds for larger well-behaved programs obtained by
composing smaller well-behaved programs using sequencing, branching, or looping constructs.
The proof here is trivial as the argument for sequencing is trivial (we can think of a loop as

108

unboundedly many sequenced compositions of the smaller well-behaved program): we can
always compose two well-behaved programs to obtain a well-behaved program. QED.

MAIN RESULT: SOUNDNESS OF FWYB

Theorem 4.1 (FWYB Soundness). Let (G,LC , φ) be an intrinsic definition with G =

{g1, g2 . . . , gl}. Let [(M : P); (N1 : Q1) . . . , (Nk : Qk)] be an augmented program constructed
using the FWYB methodology such that ⊢WB P and ⊢WB Qi, 1 ≤ i ≤ k, i.e., the programs
P and Qi are well-behaved (according to the rules in Figure 4.4). Let φ, ψpre , and ψpost be
quantifier-free formulae that do not mention Br (but can mention the maps in G). Finally,
let [(M̂ : P̂); (N̂1 : Q̂1) . . . , (N̂k : Q̂k)] be the projected user-level program according to
Definition 4.5. Then, if the triple:

{φ ∧ ψpre ∧ Br = ∅} P {φ ∧ ψpost ∧ Br = ∅}

is valid, then the triple

⟨ ∃∃ g1, g2 . . . , gl. (LC ∧ φ ∧ ψpre) ⟩ P̂ ⟨ ∃∃ g1, g2 . . . , gl. (LC ∧ φ ∧ ψpost) ⟩

is valid (according to Definition 4.4).

Informally, the soundness theorem says that given a user-written program, if we (a) augment
it with updates to ghost fields and the broken set only using the discipline for well-behaved
programs, and (b) show that if the broken set is empty at the beginning of the program
it will be empty at the end, then the original user-written program satisfies the intrinsic
specifications on preservation of the data structure.

The proof of the theorem trivially follows from the soundness of the three stages. Let us
write P as PG,Br to emphasize that the program contains ghost code that manipulates both the
G maps and Br . We begin with the fact that {φ∧ψpre ∧Br = ∅} PG,Br {φ∧ψpost ∧Br = ∅}
is valid. Since P and its auxiliary functions are well-behaved we have from Proposition 4.3
that ⟨ (∀z /∈ Br . ρ(z)) ∧ φ ∧ ψpre ⟩ PG,Br ⟨ (∀z /∈ Br . ρ(z)) ∧ φ ∧ ψpost ⟩ is valid.

Next, we use Proposition 4.2 to conclude that ⟨ (∀z. ρ(z)) ∧ φ ∧ ψpre ⟩ PG ⟨ (∀z. ρ(z)) ∧ φ ∧
ψpost ⟩ is valid, where PG is the projection of PG,Br obtained by eliminating the statements that
manipulate Br . Finally, we use Proposition 4.1, along with the fact that ∀z. ρ(z) is LC and P̂G

is the same as P̂ to conclude that ⟨ ∃∃ g1, g2 . . . , gl. (LC ∧ φ ∧ ψpre) ⟩ P̂ ⟨ ∃∃ g1, g2 . . . , gl. (LC ∧
φ ∧ ψpost) ⟩ is valid3. QED.

3The presentation of FWYB augments the original program P with manipulations to G and Br in separate

109

4.6 PROGRAMMING IN THE FWYB METHODOLOGY

In earlier sections we develop the FWYB methodology using a top-down approach, based
on a sequence of transformations that reduce the complexity of the verification problem. In
this section we adopt a bottom-up approach and present the verification of insertion into
a sorted list implemented in the FWYB methodology in its entirety. Our running example
in Section 4.4 illustrates the key technical ideas involved in verifying the program. Here we
present an end-to-end picture that showcases the verification experience in practice. To this
end we develop new ideas for the design of a language paradigm based on FWYB for writing
well-behaved programs. We begin with the definition of the data structure.

4.6.1 Data Structure Definition

We revise the definition of a sorted list presented earlier in Example 4.3 with a different set
of monadic maps. We have the following monadic maps G— prev : C → C?, length : C → N,
elems : C → Set(Int), hslist : C → Set(C) that model the previous pointer (inverse of next),
length of the sorted list, the set of keys stored in it, and its heaplet (set of locations that
form the sorted list) respectively. We use the length, keys, and heaplet maps to state full
functional specifications of methods. The local conditions are:

∀x. next(x) ̸= Nil ⇒ (key(x) ≤ key(next(x)) ∧ prev(next(x)) = x

∧ length(x) = 1 + length(next(x))

∧ elems(x) = {key(x)} ∪ elems(next(x))

∧ hslist(x) = {x} ⊎ hslist(next(x))) (⊎: disjoint union)

∧ prev(x) ̸= Nil ⇒ next(prev(x)) = x

∧ next(x) = Nil ⇒ (length(x) = 1 ∧ elems(x) = {key(x)} ∧ hslist(x) = {x}) (4.12)

The above definition is slightly different from the one given in Example 4.3. The length

map replaces the rank map, requiring additionally that lengths of adjacent nodes differ by 1.
The prev map is a gadget we find useful in many intrinsic definitions. The constraints

on prev ensure that the C-heaps satisfying the definition only contain non-merging lists.
To see why this is the case, consider for the sake of contradiction distinct objects o1, o2, o3
such that next(o1) = next(o2) = o3. Then, we can see from the local conditions that we

stages. This is done for clarity of exposition. This may not be possible in general since we may write
ghost code with expressions that use both the G maps and Br . However, we can combine the proofs of
Propositions 4.1 and 4.2 to show the soundness of projecting out all ghost code in a single stage, and
Theorem 4.1 continues to hold in the general case.

110

x y

y =
old(next(x))

z

w
next

prev prev

next

Figure 4.5: Reasoning about the set of objects
broken by x.next := z. The dashed arrow rep-
resents the old next pointer before the mutation.
The grey nodes denote objects where local condi-
tions can be broken by the mutation. We see that
only x and y may violate next and prev being
inverses.

Table 4.1: Table of impact sets corresponding
to field mutations for sorted lists. old(t) refers
to the value of the term t before the mutation.
Terms only belong to the sets if not equal to Nil .

Mutated Field f Impacted Objects Af

x.next {x, old(next(x))}
x.key {x, prev(x)}
x.prev {x, old(prev(x))}
x.hslist {x, prev(x)}
x.length {x, prev(x)}
x.elems {x, prev(x)}

must simultaneously have prev(o3) = o1 and prev(o3) = o2, which is impossible. Finally,
the hslist and elems maps represent the heaplet and the set of keys stored in the sorted list
(respectively).

The heads of all sorted lists in the C-heap is then defined by the following correlation
formula: φ(y) ≡ prev(y) = Nil

4.6.2 Constructing Provably Correct Impact Sets for Mutations

Impact Sets for Sorted List We now instantiate the rules developed in Section 4.4.3 for
sorted lists. Recall that well-behaved programs must update the broken set with the impact
set of a mutation. Table 4.1 captures the impact set for each field mutation. Note that the
terms denoting the impacted objects belong to Af only if they do not evaluate to Nil .

Let us consider the correctness of Table 4.1, focusing on the mutation of next as an example.
Figure 4.5 illustrates the heap after the mutation x.next := z. We make the following key
observation: the local constraints LC (v) for an object v refer only to the properties of objects
v, next(v), and prev(v) (see definition above), i.e., objects that are at most “one step” away
on the heap. Therefore, the only objects that can be broken by the mutation x.next :=

z are those that are one step away from x either via an incoming or an outgoing edge via
pointers next and prev . This is a general property of intrinsic definitions: mutations cannot
immediately affect objects that are far away on the heap. 4

In our case, we claim that the impact set contains at most x and old(next(x)). Here’s
4Note that a mutation can necessitate changes to monadic maps for an unbounded number of nodes

eventually ; however, these are not necessary immediately. As we fix monadic maps on a broken object, its
neighbors could get broken and need to be fixed, leading to their neighbors breaking, etc. This can lead to a
ripple effect that would eventually require an unbounded number of locations to be fixed.

111

a proof (see Fig 4.5): Consider z such that z ≠ old(next(x)) (as there is no real mutation
otherwise). If z was not broken before the mutation, then it cannot be the case that
prev(z) = x. Looking at the local conditions, it is clear that such a z will remain unbroken
after the mutation. Now consider a w not broken before the mutation such that next(w) = x.
Then it follows from the local conditions that there can only be one such (unbroken) w, and
further w ̸= x. w’s fields are not mutated, and by examining LC , it is easy to see that w
will not get broken (as LC (v) does not refer to next(next(v))). The argument is the same
for w such that prev(x) = w. Finally, consider a y not broken before the mutation such
that prev(y) = x. We can then see from the local conditions that y = old(next(x)), which is
already in the impact set.

The above argument is subtle, but we can automatically check whether impact sets declared
by a verification engineer are correct. The Mutation rule in Figure 4.4 characterizes the
impact set Anext for mutation of the field next as follows:

⊢ {u ̸= x ∧ u ̸= next(x) ∧ LC (u) ∧ x ̸= Nil} x.next := z {LC (u)} (4.13)

The above says that any location u that is not in the impact set which satisfied the local
conditions before the mutation must continue to satisfy them after the mutation. Note that
the validity of the above triple is decidable. In our realization of the FWYB methodology we
prove our impact sets correct by encoding the triple in Boogie (see Section 4.8.3).

General Construction We now present our formulation for the general case. Fix a class
with maps F ∪ G = {f1, f2, . . . fn} (includes both original and ghost fields) and an intrinsic
definition (G,LC , φ) over which we prove correctness of programs. Without loss of generality,
let f1, . . . fk for some k ≤ n alone correspond to pointer fields (where the range is an object);
the others we assume are data fields that range over background sorts. In the sequel we
assume for simplicity that LC (x) only relates the fields of x with those of fi(x) for 1 ≤ i ≤ k,
i.e., the local conditions only constrain the fields of x with those of its neighboring objects
that are “one pointer hop” away from x.

Consider a mutation x.f := y for some f in f1 through fn and an arbitrary y. It is clear
that the only set of objects whose local condition can be impacted by this mutation are
those that are one pointer hop away via an incoming or outgoing edge in the heap (seen
as a directed graph with labeled edges corresponding to pointers), apart from x itself. In
general there can be unboundedly many such objects, but in our work we only handle impact
sets that can be expressed as a finite set of terms over x (see Section 4.4.3 under ‘Rules for
Constructing Well-Behaved Programs’). Note here that the impact set can be larger than
the set of impacted objects as we only require that objects not belonging to the impact set

112

retain that LC holds on them under mutation. However, we attempt here to construct of
impact sets that are as small as possible.

Following the above discussion, let us assume that the impact set consists of terms from
the following set:

ImpactableObjects = {x, f1(x), . . . fk(x)} ∪ {old(f(x)) | f is a pointer field} (4.14)

The reader may be inclined to suggest here that when f is a pointer field, y (the new value
of f(x)) may also belong to the minimal impact set. However, this is not possible in general
since y is arbitrary, and in particular y can be an object in the heap that is “far away” from
x, i.e., not one pointer hop away (either incoming or outgoing). The same argument applies
to terms over y. Therefore, if the (minimal) impact set is at all expressible as a set of terms
over the vocabulary of the mutation statement it must be a subset of the terms in the set
ImpactableObjects defined above.

Let this subset of terms be A. We then generate the following triple to check that A is in
fact an impact set:

⊢ {(
∧

t∈A u ̸= t) ∧ LC (u) ∧ x ̸= Nil} x.f := y {LC (u)} (4.15)

The triple says that any location u that is not A which satisfied LC before the mutation
must continue to satisfy it after the mutation. As discussed in the main text, this validity of
this triple can be check effectively by decision procedures over quantifier-free combinations of
theories that are supported by SMT solvers [11, 12].

Finally, we can compute a provably correct and minimal impact set automatically, if one
exists, by considering subsets of ImpactableObjects in turn and checking the corresponding
triple as described above. However, in our experiments we compute impact sets manually
and check their correctness automatically.

4.6.3 Language Macros that Ensure Well-Behaved Programs

In Section 4.4.3 we characterized well-behaved programs as a set of syntactic rules (Fig-
ure 4.4). We can realize these restrictions using macros:

1. Mut(x,f,v,Br) for each f ∈ F∪G, which represents the sequence of statements x.f :=

v; Br := Br U Af(x). Here Af(x) is the impact set corresponding to the mutation
on f on x as given by the table above. This macro is used instead of x.f := v and
automatically ensures that the impact set is added to the broken set.

113

2. NewObj(x,Br), which represents the statements x := new C(); Br := Br U { x }.
This macro is used instead of x := new C() and ensures that any newly allocated
object is automatically added to the broken set.

3. AssertLCAndRemove(x,Br), which represents the statements assert LC(x); Br :=

Br \ { x }. This macro is allowed anytime the engineer wants to assert that x satisfies
the local condition, and then remove it from the broken set.5

4. InferLCOutsideBr(x, Br), which represents the statements assert (x ≠ nil ∧ x

/∈ Br); assume LC(x). This allows the engineer at any time to assert that x is not in
the broken set and assume it satisfies the local condition.

The above macros correspond to the rules Mutation, Allocation, Assert LC and

Remove, and Infer LC Outside Br respectively. Restricting to the syntactic fragment
that contains the above macros and disallows mutation and allocation otherwise enforces the
programming discipline that ensures well-behaved programs.

4.6.4 Verifying Insertion into a Sorted List

We provide the specifications and the code augmented with ghost annotations in Figure 4.6.

Specifications The precondition states that the broken set is empty at the beginning of
the program. The postcondition states that the returned object r satisfies the local conditions
and satisfies the correlation formula for a sorted list (i.e., prev(r) = Nil). However, the
broken set is only empty if the input object x was the head of a sorted list, and it is {prev(x)}
otherwise. The other conjuncts express functional specifications for insertion in terms of
the length, heaplet, and set of keys. We also add a ‘modifies’ clause which enables program
verifiers for heap manipulating programs to utilize frame reasoning across function calls.

Summary The proof works at a high-level as follows: we recurse down the list, reaching
the appropriate object x before which the new key must be inserted. This is the first branch
in Figure 4.6, and we show the broken set at each point in the comments to the right. We
create the new object z with the appropriate key and point z.next to x. We then fix the local
conditions on x and z. However, these fixes break the LC on old(prev(x)). We maintain this
property up the recursion, at each point fixing LC on x and breaking it on old(prev(x)) in

5We extend our basic programming language defined in Figure 4.2 with an assert statement and give it
the usual semantics (program reaches an error state if the assertion is not satisfied, but is equivalent to skip
otherwise).

114

pre: Br = ∅
post: LC (r) ∧ prev(r) = Nil

∧ Br = ite(old(prev(x)) = Nil , ∅, {old(prev(x))})
∧ length(r) = old(length(x)) + 1
∧ elems(r) = old(elems(x)) ∪ {k}
∧ old(hslist(x)) ⊂ hslist(r)

modifies: hslist(x)
sorted_list_insert(x: C, k: Int, Br: Set(C))
returns r: C, Br: Set(C)
{

InferLCOutsideBr(x, Br);
if (x.key ≥ k) then { // k inserted before x

NewObj(z, Br); // {z}
Mut(z, key, k, Br); // {z} since z.prev = nil
Mut(z, next, x, Br); // {z} since z.next = nil
Mut(z, hslist, {z} ∪ x.hslist, Br); // {z}
Mut(z, length, 1 + x.length, Br); // {z}
Mut(z, keys, {k} ∪ x.keys, Br); // {z}
Mut(x, prev, z, Br); // {z, x, old(prev(x))}
AssertLCAndRemove(z, Br); // {x, old(prev(x))}
AssertLCAndRemove(x, Br); // {old(prev(x))}
r := z;

}
else {
if (x.next = nil) then { // one-element list
NewObj(z, Br);
Mut(z, key, k, Br);
Mut(z, next, nil, Br);
Mut(z, hslist, {z}, Br);
Mut(z, length, 1, Br);
Mut(z, keys, {k}, Br);
Mut(x, next, z, Br);

Mut(z, prev, x, Br);
AssertLCAndRemove(z, Br);
Mut(x, prev, nil, Br);
Mut(x, hslist, {x} ∪ {z}, Br);
Mut(x, length, 2, Br);
Mut(x, keys, {x.key} ∪ {k}, Br);
AssertLCAndRemove(x, Br);
r := x;

}
else { // recursive case
y := x.next;
InferLCOutsideBr(y, Br);
tmp, Br := sorted_list_insert(y, k, Br); // {x}
InferLCOutsideBr(y, Br);
if (y.prev = x) then {

Mut(y, prev, nil, Br); // {y, x}
}
Mut(x, next, tmp, Br); // {y, x}
AssertLCAndRemove(y, Br); // {x}
Mut(tmp, prev, x, Br); // {tmp, x}
AssertLCAndRemove(tmp, Br); // {x}
Mut(x, hslist, {x} ∪ tmp.hslist, Br); // {x, prev(x)}
Mut(x, length, 1 + tmp.length, Br); // {x, prev(x)}
Mut(x, keys, {x.key} ∪ tmp.keys, Br); // {x, prev(x)}
Mut(x, prev, nil, Br); // {x, old(prev(x))}
AssertLCAndRemove(x, Br); // {old(prev(x))}
r := x;

}}
}

Figure 4.6: Code for insertion into a sorted list written in the syntactic fragment for well-
behaved programs(Section 4.6). Black lines denote code written by the user, and blue lines
denote lines written by the verification engineer. The comments on the right show the state
of the broken set Br after the statement on the corresponding line.

the process. This is shown in the last branch in the code. We eventually reach the head of
the sorted list, whose prev in the pre state is Nil , and at that point the fixes do not break
anything else, i.e., the broken set is empty (as desired).

The verification engineer adds ghost code to perform these fixes as shown in blue in
Figure 4.6. We can also see that there are essentially as many lines of ghost code as there
are lines of user code; we compare these values across our benchmark suite (see Table 4.3)
and find that this is typical for many methods. However, the verification conditions for the
(augmented) program are decidable because they can be stated using quantifier-free formulas
over decidable combinations of theories including maps, map updates, and sets.

4.7 ILLUSTRATIVE DATA STRUCTURES AND VERIFICATION

Intrinsic definitions and the fix-what-you-break verification methodology are new concepts
that require thinking afresh about data structures and annotating methods that operate over

115

them. In this section, we present several classical data structures and methods over them,
and illustrate how the verification engineer can write intrinsic definitions (which maps to
choose, and what the local conditions ensure) and how they can fix broken sets to prove
programs correct. We begin with case studies that embody simpler ideas and gradually move
towards more interesting case studies involving higher level concepts towards the end of the
section. We recommend following the earlier examples as thoroughly as possible to get an
understanding of how IDS and FWYB work together.

4.7.1 Right-Rotation of a BST

In this section we illustrate the IDS and FWYB methodology for trees via the verification
of right rotation on a binary search tree. Such an operation is a common tree operation, and
rotations are used widely in maintaining balanced search trees, such as AVL and Red-Black
Trees, on which several of our benchmarks operate.

We augment the definition of binary trees discussed in Section 4.1 to include the min :

BST → Real and max : BST → Real maps, which capture the minimum and maximum
keys stored in the tree rooted at a node, to help enforce binary search tree properties locally.
The local condition and the impact sets are shown in Figure 4.7 below.

LC ≡∀x.min(x) ≤ key(x) ≤ max(x)

∧ (p(x) ̸= Nil ⇒ l(p(x)) = x ∨ r(p(x)) = x)

∧ (l(x) = nil⇒ min(x) = key(x))

∧ (l(x) ̸= Nil ⇒ p(l(x)) = x ∧ rank(l(x)) < rank(x)

∧ max(l(x)) < key(x) ∧ min(x) = min(l(x)))

∧ (r(x) = nil⇒ max(x) = key(x))

∧ (r(x) ̸= Nil ⇒ p(r(x)) = x ∧ rank(r(x)) < rank(x)

∧ min(r(x)) > key(x) ∧ max(x) = max(r(x)))

Mutated Field f Impacted Objects Af

l {x, old(l(x))}
r {x, old(r(x))}
p {x, old(p(x))}

key {x}
min {x, p(x)}
max {x, p(x)}
rank {x, p(x)}

Figure 4.7: Local Conditions and Impact Sets for BST

116

We first describe the gist of how the data structure is repaired and provide the fully
annotated program below. Recall that in a BST right rotation, that there are two nodes x
and y such that y is x’s left child. After the rotation is performed, y becomes the new root of
the subtree, while x becomes y’s right child. Several routine updates of the monadic map p
(parent) will have to be made. The most interesting update is that of the rank : BST → Real

map. Since y is now the root of the affected subtree, its rank must be greater than all its
children. One way of doing this is to increase y’s rank to something greater than x’s rank.
This works if y has no parent, but not in general. To solve this issue, we use the density of the
Reals to set the rank of y to (rank(x) + rank(p(y)))/2. Note that there are a fixed number
of ghost map updates, as the various monadic maps for distant ancestors and descendants of
x, y do not change (the min/max of subtrees of such nodes do not change).

We present the fully annotated program below, with comments displaying the state of the
broken set Br at the corresponding point in the program.

pre: Br = ∅ ∧ l(x) ̸= Nil ∧ p(x) = xp
post: Br = ∅ ∧ p(ret) = xp

∧ l(ret) = old(l(l(x))) ∧ ret = old(l(x)) ∧ r(ret) = x
∧ l(r(ret)) = old(r(l(x))) ∧ r(r(ret)) = old(r(x))

bst_right_rotate(x: BST, xp: BST?, Br: Set(BST))
returns ret: BST, Br: Set(BST)
{

LCOutsideBr(x, Br);
if (xp ̸= nil) then {

LCOutsideBr(xp, Br);
}
if (x.l ̸= nil) then {

LCOutsideBr(x.l, Br);
}
if (x.l ̸= nil ∧ x.l.r ̸= nil) then {

LCOutsideBr(x.l.r, Br);
}
var y := x.l; // {}
Mut(x, l, y.r, Br); // {x, y}
if (xp ̸= nil) then {

if (x = xp.l) then {
Mut(xp, l, y, Br); // {xp, x, y}

}
else {

Mut(xp, r, y, Br); // {xp, x, y}

Figure 4.8: Right Rotation of a Binary Search Tree

117

Figure 4.8 cont.

}
}
Mut(y, r, x, Br); // {xp, x, y, x.l} (Note: x.l == old(y.r))
// (1): Repairing x.l
if (x.l ̸= nil) then {

Mut(x.l, p, x, Br); // {xp, x, y, x.l}
}
// (2): Repairing x
Mut(x, p, y, Br); // {xp, x, y, x.l}
Mut(x, min, if x = nil then x.k else x.l.min, Br); // {xp, x, y, x.l}
// (3): Repairing y
Mut(y, p, xp, Br); // {xp, x, y, x.l}
Mut(y, max, x.max, Br); // {xp, x, y, x.l}
Mut(y, rank,

if xp = nil then x.rank+1 else (xp.rank+x.rank)/2,
Br); // {xp, x, y, x.l}

AssertLCAndRemove(x.l, Br); // {xp, x, y}
AssertLCAndRemove(x, Br); // {xp, y}
AssertLCAndRemove(y, Br); // {xp}
AssertLCAndRemove(xp, Br); // {}
ret := y // return y

}

4.7.2 Reversing a Sorted List

We return to lists for another case study: reversing a sorted list. The purpose of this
example is to demonstrate how the fix-what-you-break philosophy works with iteration/loops.
We augment the definition of sorted linked lists from Case Study 4.6 to make sortedness
optional and determined by predicates that capture sortedness in non-descending order, with
sorted : C → Bool, and sortedness with non-ascending order, with rev_sorted : C → Bool.
We present the local conditions and impact sets in Figure 4.9, with the relevant additions for
these monadic maps are marked in cyan.

We also present the method in full below. However, the gist of the method is that we pop
nodes off of the front of a temporary list cur and push them to the front of a new reversed list
ret repeatedly using a loop. A technique we use to verify loops using FWYB is to maintain
that the broken set contains no nodes or only a finite number of nodes for which we specify
how they are broken. In the case of this method, Br remains empty, as the loop maintains

118

LC ≡ ∀x. prev(x) ̸= Nil ⇒ next(prev(x)) = x

∧ next(x) ̸= Nil ⇒ prev(next(x)) = x

∧ length(x) = length(next(x)) + 1

∧ elems(x) = elems(next(x)) ∪ {key(x)}
∧ hslist(x) = hslist(next(x)) ⊎ {x}
∧ sorted(x)⇒ key(x) ≤ key(next(x))

∧sorted(x) = sorted(next(x))

∧ rev_sorted(x)⇒ key(x) ≥ key(next(x))

∧rev_sorted(x) = rev_sorted(next(x))

∧ (next(x) = Nil ⇒ length(x) = 1 ∧ elems(x) = {x} ∧ hslist(x) = {x})

Mutated Field f Impacted Objects Af

next {x, old(next(x))}
key {x, prev(x)}
prev {x, old(prev(x))}
length {x, prev(x)}
elems {x, prev(x)}
hslist {x, prev(x)}
sorted {x, prev(x)}

rev_sorted {x, prev(x)}

Figure 4.9: Local Conditions and Impact Sets for Sorted List

cur and ret as two valid lists, not modifying any other nodes. When popping x from cur

and adding it to ret, in addition to repairing the new cur by setting its parent pointer to
Nil , we also need to update fields such as length and elems on x, so it satisfies the relevant
local conditions as the new head of the ret list. We present the full code below.

pre: Br = ∅ ∧ φ(x) ∧ sorted(x)
post: Br ′ = ∅ ∧ φ(ret) ∧ rev_sorted(ret) ∧ elems(ret) =

old(elems(x)) ∧ hslist(ret) = old(hslist(x))
sorted_list_reverse(x: C, Br: Set(C))
returns ret: C, Br: Set(C)
{

LCOutsideBr(x, Br);
var cur := x;
ret := null;
while (cur ̸= nil)

invariant cur ̸= Nil ⇒ LC(cur) ∧ sorted(cur) ∧ φ(cur)

Figure 4.10: Reversing a Sorted List

119

Figure 4.10 cont.

invariant ret ̸= Nil ⇒ LC(ret) ∧ rev_sorted(ret) ∧ φ(ret)
invariant cur ̸= Nil ∧ ret ̸= Nil ⇒ key(ret) ≤ key(cur)
invariant old(elems(x)) = ite(cur = Nil , ∅, elems(cur)) ∪ ite(ret =

Nil , ∅, elems(ret))
invariant old(hslist(x)) = ite(cur = Nil , ∅, hslist(cur)) ∪ ite(ret =

Nil , ∅, hslist(ret))
invariant Br = ∅
decreases ite(cur ̸= Nil , 0, length(cur))

{
var tmp := cur.next; // {}
if (tmp ̸= nil) then {

LCOutsideBr(tmp, Br); // {}
Mut(tmp, p, nil, Br); // {cur, tmp}

}
Mut(cur, next, ret, Br); // {cur, tmp}
if (ret ̸= nil) then {

Mut(ret, p, cur, Br); // {cur, tmp, ret}
}
Mut(cur, keys,

{cur.k} ∪ (if cur.next=nil then {} else cur.next.keys),
Br); // {cur, tmp, ret}

Mut(cur, hslist,
{cur} ∪ (if cur.next=nil then {} else cur.next.hslist),
Br); // {cur, tmp, ret}

if (cur.next ̸= nil ∧ (cur.key > cur.next.key ∨ ¬cur.next.sorted)) {
Mut(cur, sorted, false, Br); // {cur, tmp, ret}

}
Mut(cur, rev_sorted, true, Br); // {cur, tmp, ret}
AssertLCAndRemove(cur, Br); // {tmp, ret}
AssertLCAndRemove(ret, Br); // {tmp}
AssertLCAndRemove(tmp, Br); // {}
ret := cur;
cur := tmp;

}
// The current value of ret is returned

}

4.7.3 Circular Lists

Our next example concerns circular lists. This example illustrates a very useful gadget
we can employ in FWYB where we assert that we can reach a special node known as a
scaffolding node. In addition to asserting properties on the arguments given to a method, one

120

can also assert properties on this scaffolding node. We employ these nodes in a very special
way to make verification easier: namely, the designated scaffolding node remains unchanged
in the heap (i.e., we never “reassign” a different node to be the scaffolding node) and it is
also never deleted.

To define circular lists we start with a data structure containing a pointer next : C → C

and a monadic map prev : C → C. We define the scaffolding node for a list to be its last
element. We refer to it using a new monadic map last : C → C, the idea being that last(x)
for any location x points to the last item in the list. To ensure a circular list, the scaffolding
node s must in turn point to another node, say h, such that h.last points to s. As usual,
we also define monadic maps length : C → Nat and rev_length : C → Nat to denote the
distance to the last node by following prev or next pointers. The partial local conditions for
x are as below:

(x = last(x)⇒ last(next(x)) = x ∧ length(x) = 0 ∧ rev_length(x) = 0)

∧ (x ̸= last(x)⇒ last(next(x)) = last(x) ∧ length(x) = length(next(x)) + 1

∧ rev_length(x) = rev_length(prev(x)) + 1) (4.16)

We consider the insertion of a node at the back of a circular list. We are given a node x
such that next(x) = last(x) (at the end of a cycle). We insert a newly allocated node after x,
making local repairs there. Then, in a ghost loop similar to the one in Case Study 4.7.2, we
make appropriate updates to the length and elems maps, which are not fully described here,
following the prev map until we reach last(x).

For The Interested Reader We provide here for the interested reader some additional
details regarding this case study. We first provide the full local conditions in Figure 4.11:

It turns out that in this benchmark (as in a few others), the local conditions are partially
preserved on the “frontier” node (i.e., the node corresponding to the primary loop variable,
here cur, at a given point in the loop). One of the loop invariants is the assertion of this
partial satisfaction. To express this, we refer to two variants of the local condition, defined
as follows. The first variant is LCMinusNode(x, n) for node variables x and n, which is formed
from LC by replacing the clauses (C1), (C3), and (C4) in Figure 4.11 with the three clauses
(C1’), (C3’), and (C4’) in Figure 4.12. The second variant LCLast(x, n) is formed from LC

by replacing the clause (C2) in Figure 4.11 with hslist(x) = {x, n} ∪ hslist(next(x)). In our
actual implementation we define these variants by simply copying the code of the LC and
make the appropriate changes. We leave the systematic development of a language that deals
with the definition of such variants to future work.

121

∀x. next(x) ̸= Nil ∧ prev(x) ̸= Nil

∧ next(prev(x)) = x ∧ prev(next(x)) = x

∧ last(x) = x⇒ length(x) = 0 ∧ rev_length(x) = 0

∧ last(x) = last(next(x))

∧ next(x) = x⇒ elems(x) = ∅ ∧ hslist(x) = {x}
∧ next(x) ̸= x⇒ elems(x) = elems(next(x)) (C1)

∧ hslist(x) = {x} ∪ hslist(next(x)) (C2)
∧ last(x) ̸= x⇒ length(x) = length(next(x)) + 1

∧ rev_length(x) = rev_length(prev(x)) + 1

∧ next(x) = last(x)⇒ elems(x) = {key(x)} ∧ hslist(x) = {x}
∧ next(x) ̸= last(x)⇒ elems(x) = {key(x)} ∪ elems(next(x)) (C3)

∧ hslist(x) = {x} ∪ hslist(next(x)) (C4)
∧ x ̸∈ hslist(next(x))

∧ last(x) = last(next(x))

∧ last(last(x)) = last(x)

∧ x ∈ hslist(last(x))

∧ prev(x) ∈ hslist(last(x))

∧ next(x) ∈ hslist(last(x))

Figure 4.11: Full Local Conditions for circular lists

(elems(x) = elems(next(x)) \ {key(n)} ∨ elems(x) = elems(next(x))) (C1’)
(elems(x) = (key(x) ∪ elems(next(x))) \ {key(n)} (C3’)
∨ elems(x) = (key(x) ∪ elems(next(x))))

(hslist(x) = (x ∪ hslist(next(x))) \ {n}) (C4’)

Figure 4.12: Alterations to Figure 4.11 to form LCMinusNode

Our development of rules and macros for well-behaved programming in Sections 4.4.3
and 4.6 presented a simplified version that reflected the common cases we encountered in
our benchmarks. Adding scaffolding nodes adds complexity to this picture in that mutations
are not always allowed. When we introduce scaffolding nodes, we additionally require that a
precondition ϕ holds before we mutate particular fields of nodes. This helps ensure that the
set of impacted objects can be described by a finite set of terms. The fields, preconditions,
and impact sets for every node can be seen in Table 4.2 below.

Note that the table precludes the hslist field from being updated for the scaffolding node.

122

Table 4.2: Full Impact Sets for circular lists

Mutated Field f Mutation Precond. ϕ Impacted Objects Af

next ⊤ {x, old(next(x))}
key ⊤ {x, prev(x)}
prev ⊤ {x, old(prev(x))}
last last(x) ̸= x ∨ (last(x) = x ∧ hslist(x) = {x}) {x, prev(x)}

length ⊤ {x, prev(x)}
rev_length ⊤ {x, next(x)}

elems ⊤ {x, prev(x)}
hslist last(x) ̸= x ∨ (last(x) = x ∧ hslist(x) = {x}) {x, prev(x)}

This is obviously restrictive, since it would change when we insert a node into the list.
To address this, we define a separate manipulation macro AddToLastHsList(x, n, Br),
which, if x is a scaffolding node (or last(x) = x), adds the node n to the set hslist(x). The
precondition for invoking this macro is that last(x) = x, and the only object impacted by the
macro is {x}. Once again, there are several nuances that arise when verifying a diverse set of
intrinsic datastructures that do not fit neatly into the syntax of well-behaved programming
presented in this chapter. We leave the development of a more comprehensive language
paradigm to the future. We end our discussion with the full code.

pre: Br = ∅ ∧ next(x) = last(x)
post: Br = ∅ ∧ next(ret) = last(ret) ∧ last(ret) = old(last(x))

∧ elems(last(ret)) = old(elems(last(x))) ∪ {k}
∧ fresh(hslist(last(ret)) \ old(hslist(last(x))))

circular_list_insert_back(x: C, k: Int Br: Set(C))
returns ret: C, Br: Set(C)
{

LCOutsideBr(x, Br);
LCOutsideBr(x.next, Br);
LCOutsideBr(x.prev, Br);

var last: C = x.next;
var node: C;
NewObj(node, Br);
Mut(node, key, k, Br);
Mut(node, next, x.next, Br);
Mut(x, next, node, Br);

Figure 4.13: Insertion into a Circular List

123

Figure 4.13 cont.

AddToLastHsList(last, node, Br);
Mut(last, prev, node, Br);
Mut(node, prev, x, Br);
Mut(node, length, 1, Br);
Mut(node, rev_length, 1 + node.prev.rev_length, Br);
Mut(node, keys, {k}, Br);
Mut(node, hslist, {node}, Br);
Mut(node, last, node.prev.last, Br);
AssertLCAndRemove(node, Br);

ghost var cur: C = x;
label PreLoop:
while (cur ̸= last)

invariant cur ̸= last⇒ Br = {cur, last}
∧ LCMinusNode(cur, node)
∧ last(cur) = last
∧ LCLast(last, node)

invariant cur = last⇒ LCMinusNode(cur, node)
invariant node ∈ hslist(next(cur))
invariant k ∈ elems(next(cur))
invariant Unchanged@PreLoop(node)
invariant Unchanged@PreLoop(last)
invariant Br ⊆ {cur, last}
decreases rev_length(cur)

{
if (cur.prev ̸= last) {

LCOutsideBr(cur.prev, Br);
}
Mut(cur, length, cur.next.length + 1, Br);
Mut(cur, hslist, cur.next.hslist + {node});
Mut(cur, keys, cur.next.keys + {node.k});
AssertLCAndRemove(cur, Br);
cur := cur.prev;

}

LCOutsideBr(node, Br);
Mut(cur, keys, cur.next.keys, Br);
AssertLCAndRemove(cur, Br);
AssertLCAndRemove(node, Br);
ret := node;

}

124

4.7.4 Merging Sorted Lists

We demonstrate the ability of intrinsic definitions to handle multiple data structures at
once, using the example of in-place merging of two sorted lists. The method merges the two
lists by reusing the two lists’ elements, which is a natural pattern for imperative code. Once
again, we extend the definition of sorted lists from Case Study 4.6. We add the predicates
list1 : C → Bool, list2 : C → Bool, and list3 : C → Bool, to indicate disjoint classes of lists.
The relevant differences in the local conditions and impact sets is shown in cyan Figures 4.15
and 4.14 below. Note that disjointness of the three lists is ensured by insisting that every
object has at most one of the three list predicates hold.

We now describe the high level ideas involved in the proof. The recursive merge method
compares the keys at the heads of the first and second sorted lists, and adds the appropriate
node to the front of the third list. It turns out that we can easily update the ghost maps for
this node (making it belong to the third list, and updating its parent pointer and key set) as
well as updating the parent pointer of the head of the list where the node is removed from.
When one of the lists is empty, we append the third list to the non-empty list using a single
pointer mutation and then, using a ghost loop, we update the nodes in the appended list to
make list3 true (this needs a loop invariant involving the broken set). The full code along with
the ghost updates is available at: https://dl.acm.org/do/10.5281/zenodo.10963124

LC ≡ ∀x.(list1(x) ∨ list2(x) ∨ list3(x))

∧ ¬(list1(x) ∧ list2(x)) ∧ ¬(list2(x) ∧ list3(x)) ∧ ¬(list1(x) ∧ list3(x))

∧ (list1(x)⇒ (next(x) ̸= Nil ⇒ list1(next(x))))

∧ (list2(x)⇒ (next(x) ̸= Nil ⇒ list2(next(x))))

∧ (list3(x)⇒ (next(x) ̸= Nil ⇒ list3(next(x))))

∧ (prev(x) ̸= Nil ⇒ next(prev(x)) = x)

∧ (next(x) ̸= Nil ⇒ prev(next(x)) = x

∧ length(x) = length(next(x)) + 1

∧ elems(x) = elems(next(x)) ∪ {key(x)}

∧ hslist(x) = hslist(next(x)) ⊎ {x} (disjoint union)

∧ key(x) ≤ key(next(x)))

∧ (next(x) = Nil ⇒ length(x) = 1 ∧ elems(x) = {key(x)} ∧ hslist(x) = {x})

Figure 4.14: Local Conditions for disjoint sorted lists

125

https://dl.acm.org/do/10.5281/zenodo.10963124

Mutated Field f Impacted Objects Af

next {x, old(next(x))}
key {x, prev(x)}
prev {x, old(prev(x))}
length {x, prev(x)}
elems {x, prev(x)}
hslist {x, prev(x)}
list1 {x, prev(x)}
list2 {x, prev(x)}
list3 {x, prev(x)}

Figure 4.15: Impact Sets for disjoint sorted lists

4.7.5 Overlaid Data Structure of List and BST

One of the settings where intrinsic definitions shine is in defining and manipulating an
overlaid data structure that overlays a linked list and a BST. The list and tree share the same
locations, and the next pointer threads them into a linked list while the left, right pointers
on them defines a BST. Such structures are often used in systems code (such as the Linux
kernel) to save space [82]. For example, I/O schedulers use an overlaid structure as above,
where the list/queue stores requests in FIFO order while the bst enables faster searching
according requests with respect to a key. While there has been work in verification of memory
safety of such structures [82], we study the preservation of such data structures.

The intrinsic definition of such an overlaid data structure is pleasantly compositional. We
simply take the union of the monadic maps and conjoin the local conditions corresponding to
linked lists and BSTs!. Of course, we must ensure that the two structures contain the same
set of locations. We introduce a monadic map bst_root that maps a node to the root of the
BST it belongs to, and a map list_head that maps a node to the head of the list it belongs to.
We then demand that all locations in a list have the same bst_root and all locations in a tree
have the same list_head, using local conditions. We also use monadic maps corresponding to
bst-heaplets and list-heaplets (i.e., locations that belong to the tree under the node or the list
from that node, respectively). We define a correlation predicate Valid that relates the head h
of the list and root r of the tree by demanding that the bst-root of h is r and the list-head of
r is h, and furthermore, the list-heaplet of h and tree-heaplet of r are equal. Formally:

Valid ≡ bst_root(h) = r ∧ list_root(r) = h ∧ list_heaplet(h) = bst_heaplet(r) (4.17)

126

We prove certain methods manipulating this overlaid structure correct (such as deleting
the first element of the list and removing it both from the list as well as the BST). Except
those fields whose mutation breaks local conditions for both structures, the ghost annotations
are mostly compositional— we repair maps for the BST component in the same way we fix
them for stand-alone BSTs and fix them for the list component in the same way we would
for stand-alone lists. In fact, we maintain two broken sets, one for BST and one for list, as
updating a pointer for BST often does not break the local property for lists, and vice versa.

Limitations In modeling the data structures above, we crucially used the fact that for any
location, there is at most one location (or a bounded number of locations) that has a field
pointing to this location. We used this fact to define an inverse pointer (prev or parent/p),
which allows us to capture the impact set when a location’s fields are mutated. Consequently,
we do not know how to model structures where locations can have unbounded indegree. We
could model these inverse pointers using a sequence/array of pointers, but verification may
get more challenging. Data structures with unbounded outdegree can however be modeled
using just a linked-list of pointers and hence seen as a structure with bounded outdegree.

4.8 IMPLEMENTATION AND EVALUATION

4.8.1 Implementation Strategy of IDS and FWYB in Boogie

We implement intrinsically defined data structures and FWYB verification in the program
verifier Boogie [83]. Boogie is an intermediate verification language which supports
systematic generation of verification conditions that are checked using SMT solvers. Our
benchmarks are available at: https://dl.acm.org/do/10.5281/zenodo.10963124

We choose Boogie for our realization of the FWYB framework as it is a low-level verification
condition generator, which allows us to reasonably expect that scalar programs with quantifier-
free specifications, annotations, and invariants, and given our careful modeling of the heap
and its modification across function calls (Section 4.4.4), reduces to quantifier-free verification
conditions that fall into decidable logics. We further cross-check that our encodings indeed
generate decidable queries by checking the generated SMT files. Furthermore, a plethora of
higher-level languages compile to Boogie (e.g., VCC and Havoc for C [72, 73], Dafny [9]
with compilation to .NET, Civl for concurrent programs [74], Move for smart contracts [75],
etc.). Implementing a technique in Boogie hence shows a pathway for implementing IDS
and FWYB for higher-level languages as well.

127

https://dl.acm.org/do/10.5281/zenodo.10963124

Modeling Fix-What-You-Break Verification in Boogie We model heaps in Boogie by
having a sort Loc of locations and modeling pointers as maps from Loc to sorts. We implement
monadic maps also as maps from locations to field values. We implement our benchmarks
using the macros for well-behaved programming defined in Section 4.6. We implement
allocation with an Alloc set and heap change across function calls using parameterized map
updates as described in Section 4.4.4.

We ensure that the VCs generated by Boogie fall into decidable fragments, and there
are several components that ensure this. First, note that all specifications (contracts and
invariants) are quantifier-free. Second, pure functions (used to implement local conditions)
are typically encoded using quantification, but we ensure Boogie inlines them to avoid
quantification. Third, heap updates that are the effect of procedures and set operations for
set-valued monadic maps are modeled using parameterized map updates [71], which Boogie

supports natively. Finally, we cross-check that the generated SMT query is quantifier-free
and decidable by checking the absence of statements that introduce quantified reasoning,
including exists, forall, and lambda.

4.8.2 Benchmarks

We evaluate our technique on a variety of data structures and methods that manipulate
them. Our benchmark suite consists of data structure manipulation methods for a variety of
different list and tree data structures, including sorted lists, circular lists, binary search trees,
and balanced binary search trees such as Red-Black trees and AVL trees. Methods include
core functionality such as search, insertion and deletion. The suite includes an overlaid
data structure that overlays a binary search tree and a linked list, implementing methods
needed by a simplified version of the Linux deadline IO scheduler [82]. The contracts for
these functions are complete functional specifications that not only ask for maintenance of
the data structure, but correctness properties involving the returned values, the keys stored
in the container, and the heaplet of the data structure.

4.8.3 Evaluation

We first evaluate the following two research questions:
RQ1: Can the data structures be expressed using IDS, and can the FWYB
methodology for methods on these structures be expressed in Boogie?
RQ2: Is Boogie with decidable verification condition generation dispatched to
SMT solvers effective in verifying these methods?

128

Table 4.3: Implementation and verification of benchmarks in Boogie. The columns give
data structure, size of local conditions for capturing the datatructure as number of conjuncts,
method, lines of executable code in the method, lines of specification (pre/post), lines of
ghost code annotations (invariants/monadic map updates), and verification time in seconds.

Data Structure LC Method LOC+Spec T(s) Method LOC+Spec T(s)
Size +Ann +Ann

Linked List 8

Append 4+11+10 2.0 Insert-Back 6+13+12 2.0
Copy-All 7+8+9 2.0 Insert-Front 3+13+7 2.0

Delete-All 10+9+16 2.0 Insert 9+13+23 2.0
Find 4+4+2 1.9 Reverse 6+8+18 2.1

Sorted List 14
Delete-All 10+9+16 2.1 Merge 11+9+20 2.1

Find 4+4+2 1.9 Reverse 5+14+22 2.1
Insert 9+16+27 2.1

Sorted List-Alt 20 Concatenate 6+10+13 2.2 Find-Last 5+10+9 2.0

Circular List 27 Insert-Front 4+12+41 2.3 Delete-Front 3+12+39 2.4
Insert-Back 5+14+45 2.4 Delete-Back 3+13+55 2.4

BST 35 Find 4+3+5 2.0 Delete 10+13+30 2.8
Insert 9+12+37 2.7 Remove-Root 17+15+47 3.8

Treap 37 Find 4+3+5 2.0 Delete 10+13+30 3.1
Insert 19+12+74 10.2 Remove-Root 24+15+74 5.4

AVL Tree 45 Insert 12+12+36 5.1 Find-Min 5+5+8 2.1
Delete 43+13+62 5.3 Balance 40+17+95 5.0

RB Tree 48
Insert 76+12+203 74.1 Del-L-Fixup 33+20+93 8.9
Delete 56+13+76 5.8 Del-R-Fixup 33+20+93 7.4

Find-Min 5+5+8 2.1
BST-Scaffolding 59 Delete-Inside 1+24+51 4.8 Remove-Root 44+31+61 10.2
Overlaid Queue

(SLL+BST) 72 Move-Request 4+10+8 2.9 Delete-Inside 1+29+55 4.9
List-Remove-First 5+13+10 2.7 Remove-Root 44+36+65 15.0

As we have articulated earlier, intrinsic definitions and monadic map updates require a
new way of thinking about programs and repairs. We implement the specifications using
monadic maps and local conditions, and the benchmarks using the well-behavedness macros
and ghost updates. We were able to express all data structures and FWYB annotations for
the methods on these structures for our benchmarks in Boogie (RQ1). Importantly, we were
able to write quantifier-free modular contracts for the auxiliary methods and loop invariants
using the monadic maps and strengthening the contracts using quantifier-free assertions on
broken sets (which may not be empty for auxiliary methods). We do not prove termination
for these methods except for ghost loops and ghost recursive procedures (termination for the
latter is required for soundness).

Our annotation measures and verification results are detailed in the table in Table 4.3,
for 42 methods across 10 data structure definitions. These measurements were taken from
a machine with an Intel™ Core i5-4460 processor at 3.20 GHz. We found the verification

129

performance excellent overall (RQ2): all the methods verify in under 2 minutes, and all
but four verify in under 10 seconds. We used the option that sets the maximum number
of VC splits to 8 in Boogie. The times reported for each method are the sum of times
taken for the following steps: verifying that the impact sets are correct (<3s for all data
structures), generating verification conditions with Boogie, injecting parametric update
implementations, and solving the SMT queries.

Notice that the lines of ghost code written is nontrivial, but these are typically simple,
involving programmatically repairing monadic maps and manipulating broken sets. In fact,
a large fraction (∼ 60%) of ghost updates in our benchmarks were definitional updates
that simply update a field according to its definition in the local condition. An example is
updating x.length to x.next.length + 1 for lists. We believe that the annotation burden can
be significantly lowered in future work by automating such updates. More importantly, note
that none of the programs required further annotations like instantiations, triggers, inductive
lemmas, etc. in order to prove them correct.

RQ3: What is the performance impact of generating decidable VCs?
To study this, we implemented the entire benchmark suite described in Table 4.3 in Dafny,

a higher-level programming language that uses Boogie to perform its verification. We defined
the datastructures and the repaired the ghost maps identically to the Boogie version.

Figure 4.16: Performance comparison between
using Boogie and Dafny

Even though our annotations are all
quantifier-free, Dafny generates Boogie

code where several aspects of the language, in
particular allocation and heap change across
function calls, are modeled using quantifiers,
resulting in quantified queries to SMT solvers.
The scatter plot on the right shows the perfor-
mance of Boogie and Dafny on the bench-
marks. The plot clearly strongly suggests
that even though Dafny is able to prove the
FWYB-annotated programs correct, using
decidable verification conditions results in
much better performance. We hence believe
that implementing program verifiers (such
as Dafny) that exploit the fact that FWYB annotations can be compiled to annotations
in Boogie that result in decidable VCs is a promising future direction to achieve faster
high-level IDS+FWYB frameworks.

130

ADDENDUM: OPERATIONAL SEMANTICS

We give the formal operational semantics for programs in our language (Figure 4.2) in
Figure 4.17 below and briefly describe some important design decisions.

⊥ ∗−→ ⊥

(s,O, I)
skip−−→ (s,O, I)

(s,O, I)
x :=Nil−−−−→ (s[x 7→ Nil], O, I)

(s,O, I)
x := y−−−→ (s[x 7→ s(y)], O, I)

(s,O, I)
v := be−−−→ (s[v 7→ e], O, I) where be interprets to e according to s and I

(s,O, I)
y :=x.f−−−−→ (s[y 7→ I(f, s(x))], O, I) if (f, s(x)) ∈ dom(I) (similarly for v := x.d)

(s,O, I)
y :=x.f−−−−→ ⊥ if (f, s(x)) /∈ dom(I) (similarly for v := x.d)

(s,O, I)
x.f := y−−−−→ (s,O, I[(f, s(x)) 7→ s(y)]) if (f, s(x)) ∈ dom(I) (similarly for x.d := v)

(s,O, I)
x.f := y−−−−→ ⊥ if (f, s(x)) /∈ dom(I) (similarly for x.d := v)

(s,O, I)
x := new C()−−−−−−−→ (s[x 7→ o], O ∪ {o}, I[(f, o) 7→ defaultf])

for some o ∈ N such that o /∈ O

(s,O, I)
r :=Function(t)−−−−−−−−−→ (s[r 7→ s′(n)], O′, I ′) if (∅[m 7→ s(t)], O, I)

Q(m, ret :n)−−−−−−→ (s′, O′, I ′)

where Q(m, ret : n) is the code of the method Function,
with m and n being the formal input and output parameters for Q

(s,O, I)
assume cond−−−−−−→ (s,O, I) if cond interprets to True according to s and I

(s,O, I)
P1 ;P2−−−→ (s′′, O′′, I ′′) if (s,O, I) P1−→ (s′, O′, I ′)

and (s′, O′, I ′)
P2−→ (s′′, O′′, I ′′) for some (s′, O′, I ′)

(s,O, I)
if cond thenP1 elseP2−−−−−−−−−−−→ (s′, O′, I ′) if (s,O, I) assume cond ; P1−−−−−−−−−→ (s′, O′, I ′)

(s,O, I)
if cond thenP1 elseP2−−−−−−−−−−−→ (s′, O′, I ′) if (s,O, I) assume¬cond ; P2−−−−−−−−−−→ (s′, O′, I ′)

(s,O, I)
while cond doP−−−−−−−−→ (s′, O′, I ′) if (s,O, I) assume cond ;P ;while cond doP−−−−−−−−−−−−−−−−−→ (s′, O′, I ′)

(s,O, I)
while cond doP−−−−−−−−→ (s,O, I) if (s,O, I) assume¬cond−−−−−−−→ (s,O, I)

Figure 4.17: Operational Semantics

Configurations are of the form (s,O, I) where O ⊂finite N represents the set of allocated
objects, s represents the store and interprets program variables, and I represents the heap

131

and interprets mutable fields in F—including ghost fields G when they are used— on O

(interpretations are total). Although formally s and I are a family of functions indexed by
the sorts of the variables (resp. signatures of the maps), we abuse notation and use s(x) to
denote the interpretation of a variable x, and similarly I(f, o) to denote the value of the field
f on the object o in the configuration. We add a sink state ⊥ to model error.

Our language is safe, (i.e., allocated locations cannot point to un-allocated locations) and
garbage-collected. The operational semantics is the usual one for such programs. Figure 4.17
presents a simplified operational semantics without considering return statements. The full
semantics adds a marker to signify completion of a procedure. Procedures can only end after
return statements (we syntactically disallow statements after a return) or at the end of a
program.

The rules for assignments, skip, sequencing, conditionals, and loops are trivial. De-
referencing a variable that does not point to an object (i.e., is Nil) leads to the error state ⊥.
Allocation ensures memory safety by assigning the value of a field f on a newly allocated
object to a constant defaultf . For pointer fields this value is Nil . Finally, we define the
operational semantics for function calls using summaries.

132

Chapter 5: Synthesizing Axiomatizations using Logic Learning

In this final work of the thesis we turn our sights to broader avenues for the automation
of creativity gaps through learning. Axioms and inference rules form the foundation of
deductive systems and are crucial in the study of reasoning with logics over structures.
Historically, axiomatizations have been discovered manually with much expertise and effort.
In this chapter we show the feasibility of using learning-based synthesis techniques similar to
the ones developed earlier in Chapter 3 to discover axiomatizations for different classes of
structures, and in some contexts, automatically prove their completeness. For evaluation, we
apply our technique to find axioms for (1) classes of frames in modal logic characterized in
first-order logic and (2) the class of language models with regular operations.

5.1 INTRODUCTION

Several applications in programming languages, formal verification, and associated fields
benefit from deductive reasoning in logics. Depending on the application domain, we need
to reason with particular logics over particular classes of structures1. The logics are often
specialized, and the classes of structures are those relevant to the problem domain, which
may be known intuitively or defined precisely. Examples abound including modal logics to
reason about transition systems (or Kripke structures) [84], temporal logics to reason about
sequential or branching behavior of systems [85, 86], logics to reason with algebraic data types
in functional programming languages [87], logics to reason with Kleene algebras that can
model packet movement in networks [88], and separation logic to reason with pointer-based
data structures in imperative programs [89].

The foundations of deductive reasoning for a logic L over a particular class of structures
C lies in the axiomatic method, which utilizes general deductive mechanisms for deriving
logical truths in L applied to a set of axioms AC that captures fundamental properties of C.
Whether reasoning over one particular intended structure (e.g., arithmetic or an algebraic
data type) or an intended class of structures (e.g., lists or other data structures in a heap,
mathematical groups, or Kleene algebras), the axiomatic method involves finding a basic set
of properties that logically characterize the structures. Other properties of the structures are
then logically entailed by the basic axioms, and entailment can be mechanized using a variety
of reasoning methods for the logic, including proof systems and algorithmic procedures.

The material in this chapter is entirely reproduced from the publication in cited as [16] co-authored by
the author of this thesis, with minor changes.

1Also known as models. We use structure and model interchangeably.

133

In special circumstances, all properties common to structures in C are logically entailed by
a finite or recursive set of axioms, in which case the axiom system is said to be complete.
A complete set of axioms coupled with a powerful enough deductive system then yields a
complete proof system for the class of structures C.

In recent years there has been tremendous progress in two fields that are relevant to
our quest— (1) automated validity checking for different logics and (2) program synthesis.
Significant strides have been made in identifying (semi-)decidable logical theories and in
building automatic and efficient procedures for validity [11, 90]. There has also been significant
progress in program and expression synthesis, where the goal is to synthesize a program or
logical expression that satisfies a given set of constraints (e.g., see [91]).

Formulating axiomatizations is a difficult task typically done by humans, and most typically
by researchers with considerable prowess in logic. Armed with current automated reasoning
and program synthesis techniques, we ask the following (perhaps audacious) question:

Can computers help us find axiomatizations?

Intuitively, both logical reasoning and expression synthesis are useful for this problem—
axioms are logical expressions that we want to synthesize, and reasoning is needed to prove
that an axiom is valid over a class of structures, as well as for other tasks, e.g., checking if an
axiom is implied by another set of axioms.

In this chapter we formulate the problem of axiomatizing a class of structures in a logic.
This is a model-theoretic formulation of axiomatization that is independent of proof systems.
Given a logic L and a subclass C of structures within a larger class S, an axiomatization we
aim to find is a finite set A of sentences in L that (a) hold on all structures in C, (b) are
nontrivial in that they do not hold over all structures in S, and (c) are mutually independent
in terms of semantic entailment with respect to S. Such an axiomatization A is said to be
complete if it semantically entails all sentences expressible in L that hold over C. That is, for
any sentence φ ∈ L that is true for every structure in C, we have that every structure in S
satisfying the axioms A also satisfies φ, i.e. A |= φ.

5.1.1 Learning-based Axiom Synthesis (LAS) Framework

The main contribution of this chapter is a framework and core algorithm for solving the
axiom synthesis problem, consisting of logical reasoning and expression synthesis components.
We propose the Learning-based Axiom Synthesis (LAS) framework to facilitate synthesis
of sound/complete axiomatizations. For a particular logic L and a subclass C of a class of
structures S, this framework calls for implementing and combining the following components:

134

• VC: a procedure that checks the validity of formulae in L over the class C

• Cex: a procedure that generates a counterexample to rule out a formula that is invalid
over C

• VS: a procedure that checks entailment of formulae in L over the class S

• Learner: a procedure that proposes axioms in L using counterexamples reported by Cex

Given C and the logic L, whose semantics over S is known, the LAS framework can be
instantiated to axiomatize C by implementing the procedures VC, Cex, VS, and Learner.
The framework specifies a core algorithm that combines these procedures to find a sound
axiomatization for C.

Note that, because individual structures may have infinite domains and the class C may
be infinite as well, it does not make sense to think of C as an input. Instead, the framework
requires reasoning and counterexample generation procedures to be implemented for C and S.
The notion of counterexamples is rather nuanced. If structures in C are finite (even though
the set C is not), we may expect Cex to directly provide structures as counterexamples for
the soundness of proposed axioms. When structures are infinite, however, Cex may generate
what we call pseudo-models, which are finite objects that rule out unsound formulae and
indicate the existence of a counterexample structure (which may be infinite). The notion of
pseudo-models depends on the specific setting, and we elaborate on this later.

Each procedure required by the framework serves a specific purpose for axiom synthesis.
First, when Learner proposes a candidate axiom in L, we can determine whether it is sound,
i.e. valid over C, by using the procedure VC. Second, having synthesized a set of sound
axioms A, we can check for redundancies, i.e. whether any axioms in A are logically entailed
by the others, by using the procedure VS. Third, Learner is a generic expression synthesis
procedure that is aware of the universal class of structures S and the semantics of the logic
L over S, but it is agnostic to the class C. To efficiently search for axioms, it hence needs
counterexamples from C. Finally, each time Learner proposes a candidate that is unsound, the
procedure Cex generates a pseudo-model that witnesses that the axiom is false, and Learner

uses it to prune the search space for new axioms.
Since we would like to deal with expressive logics and classes of structures, we cannot avoid

that the procedures may be incomplete and non-terminating in various ways. In particular,
in many cases the validity procedures VC and VS will be non-terminating, though of course
they must be sound: if they terminate with an answer then that answer is correct.

The LAS framework can be seen as a kind of counterexample-guided inductive synthesis
(CEGIS) framework for synthesizing axiom systems [55]. In typical synthesis problems the

135

specification for synthesized expressions is formalized as a logical constraint. However, in
axiom synthesis, axioms are a sound and independent set of statements for a class C, and it
is not possible to capture this requirement as a logical constraint (e.g., as in SyGuS [91]).
However, by implementing the teacher using the components VC, Cex, and VS, LAS facilitates
a CEGIS algorithm using a learner that inductively learns expressions from counterexamples.
The LAS framework and the notion of pseudo-models to learn classes with infinite models
are contributions of our work.

5.1.2 Complete Axiomatizations

The framework suggested above does not address the problem of finding complete axioma-
tizations. First, we need to define precisely what we mean by completeness, and there are
multiple natural notions here. We could say that a set of sound axioms A is complete if
the subclass of S that satisfies A is precisely C. This is equivalent to requiring that every
structure in S that is not in C violates at least one axiom in A.

However, there is another natural and common notion: A is complete if every property φ
(expressible in L) that holds over C is semantically entailed by A. Note the difference: this
does not demand that C is captured precisely, but rather that it is captured up to properties
expressible in L. In other words, if we take all structures in S that satisfy the axioms A,
we should get the class C ′ ⊇ C of all structures that satisfy every property that holds over
C. If C ′ = C then the above two notions coincide. (For readers familiar with the notion of
elementary class [87]: this is the same notion except that instead of first-order properties it
involves properties expressible in L.)

The LAS framework involves an optional completeness checker CC. Given axioms A, the
procedure CC checks whether there is a structure M that satisfies A but does not satisfy
all properties common to C. Completeness checks are extremely hard to automate, in part
because C ′ may be a complex class that is hard to understand. However, when C ′ = C, then
CC need only check whether there is a structure in S \ C that satisfies the axioms, which is
feasible in some cases.

5.1.3 Instantiations of LAS

The second contribution of this chapter is an instantiation of LAS in two different settings:

• Modal Logics [92, 93]. The subfield of modal logic called correspondence theory char-
acterizes classes of Kripke structures (transition systems with propositional valuations

136

for each state) using axioms in modal logic. We instantiate LAS in this setting to
synthesize axioms for 17 different classes of structures from the literature.

• Languages with Kleene star [94, 95, 96]. We instantiate LAS to synthesize equational
axioms for a class of structures consisting of arbitrary word languages over finite
alphabets with the operations of concatenation, union, and Kleene star.

While the framework remains the same, both of the settings above have nuances. Modal
logic axiomatizations for classes of Kripke structures is a natural example for our framework,
especially since there are a large number of classes to study systematically. It presents
unique challenges, however— axioms in modal logic have semantics that involves universal
quantification over the propositional valuations, which requires us to handle second-order
reasoning. Completeness checking is also highly nontrivial, but we are able to synthesize
complete axiomatizations for all 17 classes (and with 14 of them automatically proven
complete). Axiomatizing word languages with operations poses a different set of challenges—
though our instantiation of LAS manages to effectively discover and reason with equational
axioms, it is known that any complete finite axiomatization must go beyond equations [97],
e.g., to conditional equations, which substantially increases the complexity of reasoning
procedures. In fact, the equational axioms that our tool finds are stronger than the purely
equational axioms in standard axiomatizations for Kleene algebras.

Despite the nuances and complexity described above, the tool we develop for these in-
stantiations effectively discovers sound (and in some cases complete) axiomatizations in
reasonable time, and furthermore, the axioms resemble those found by human researchers,
after accounting for simple, semantically-equivalent rearrangements. We believe that the
relative success of our framework in two different settings shows its promise for automating
axiomatizations. As logical reasoning and expression synthesis technologies improve, the
framework, being parameterized over these, will also become more effective.

In summary, the contributions of this chapter are: (a) a model-theoretic formulation of the
axiom synthesis problem, (b) the Learning-based Axiom Synthesis framework that facilitates
a CEGIS-style algorithm for automating axiom synthesis, (c) the notion of pseudo-models
which can be used as counterexamples for axiom synthesis, and (d) instantiations of the LAS
framework in two domains that argue its efficacy, modal logic (17 classes of structures) and
equational axioms for Kleene algebras.

Outline This chapter is structured as follows. In Section 5.2, we show how LAS works
for an illustrative example, namely, axiomatizing equivalence relations from structures that
encode partitions. Section 5.3 presents our model-theoretic formulation of the axiom synthesis

137

problem, with discussions on sound and complete axiomatizations. We present the LAS
framework in Section 5.4 and define the components needed for reasoning, counterexample
generation, and synthesis. In Sections 5.5 and 5.6, we present instantiations of the LAS
framework for the settings of modal logic (correspondence theory) and languages with regular
operations. The nuances in each setting, realizations of components, implementation details,
evaluation, and the axiomatizations found by our tool are reported in the corresponding
sections.

5.2 EXAMPLE: AXIOMATIZING EQUIVALENCE RELATIONS

We begin by illustrating LAS in a very simple setting. We want to synthesize the axioms
of the relations that characterize equi-membership in partitions of sets (which we familiarly
call equivalence relations, with axioms for reflexivity, symmetry, and transitivity). This
example covers many aspects of our framework (except completeness). It illustrates how the
axiomatization problem is defined, how to build the components for reasoning, and also the
axiomatization produced by our tool.

The equi-membership relation for a partition of a set is a binary relation that relates two
elements precisely when they occupy the same partition cell. Let us model a partition P

of a set X by a function f : X → X, where for each element c ∈ f(X) ⊆ X we have one
cell Pc := {x ∈ X : f(x) = c}. In other words, two elements belong to the same set in a
partition if and only if f maps them to the same elements. Intuitively, our goal is to find
a (preferably small) set of axioms expressed as first-order logic sentences that captures the
theory of relations R defined using such partitions. More precisely, we want an axiomatization
that uses sentences referring only to R (and not to “f” or “ = ”) which are true in every
structure that satisfies:

ψ := ∀x.∀y. (R(x, y)↔ f(x) = f(y)) (5.1)

The target class C hence consists of structures that satisfy formula 5.1, each being a set of
elements together with interpretations for f , =, and R, with = possessing the usual meaning.
Each structure in C therefore interprets R as the equi-membership relation defined by the
partition that puts two elements x and y in the same cell if f(x) = f(y).

Suppose we have an axiom synthesizer that proposes candidate axioms. Leaving aside how
to obtain the synthesizer, we must at least be able to determine whether a candidate axiom
is truly an axiom, i.e., whether it is true in each structure in C. In this example, the target
class is characterized in first-order logic by ψ above. Checking that a candidate formula φ

138

is in fact a true axiom requires checking that every structure M ∈ C makes φ true, which
corresponds to the validity of

ψ → φ (5.2)

Validity in the class C, which is equivalent to the first-order validity of 5.2 for this example,
corresponds to what we call soundness and is checked in our framework by a component we
call VC. We refer to formulae that are true for all structures in C as sound axioms. As an
example, suppose the synthesizer proposes the candidate

φ := ∀x.∀y.R(x, y) (5.3)

This is not a sound axiom, because any partition with at least two cells satisfies ψ (5.1) but
not φ, and therefore does not satisfy 5.2. In this setting, we can implement VC using any
semi-decision procedure for first-order logic validity. Note, however, that we cannot hope to
mechanically prove that a candidate axiom is not sound. We must be content with admitting
axioms that we can prove sound and discarding those that we cannot prove.

Can we do better than merely filtering candidate axioms for soundness? A key idea in
synthesis is the use of counterexamples to guide search. If we can find counterexamples that
witness unsoundness, then we can use them to rule out many other unsound candidates.
For any unsound φ like the one above, there must be a structure M ∈ C such that M ̸|= φ

(though it may be difficult or impossible to automatically find one, and it may not be finitely
representable). If we can indeed effectively find counterexamples, then we can maintain a set
of counterexample structures in a counterexample-guided synthesis loop. In each iteration, we
can query the synthesizer for candidate axioms that are true in all counterexample structures
found up to that point. Candidate axioms are then subjected to a soundness check, and
if proven, added to a growing set of axioms. Continuing with our example above, suppose
we begin with an empty set of counterexample structures and the first candidate axiom
is φ := ∀x.∀y.R(x, y). After failing to prove it sound, we may generate a counterexample
structure M with, say, four solitary elements in their own partition cells, as shown in
Figure 5.1. In the following iterations, all candidate axioms proposed by the synthesizer are
required to be true in M . Notice that this is a favorable counterexample because it rules out
several unsound candidates beyond φ. For instance, the unsound axiom

∀x.∀y.∀z. (R(x, y) ∨R(y, z) ∨R(x, z)) (5.4)

is eliminated by M , but would not have been eliminated by a partition of two elements in
their own cells.

139

M :=

·

·

·

·
f

f

f

f
∀xy.R(x, y),

Rules out: ∀xyz. (R(x, y) ∨R(y, z) ∨R(x, z)),
∃x.∀y.R(x, y), ...

Figure 5.1: A counterexample structure M that encodes a partition with 4 singleton cells. It
witnesses unsoundness of the candidate axiom ∀x.∀y.R(x, y) and many others.

Building a counterexample synthesizer, which we call Cex, is a hard problem. In general,
there is no procedure that delivers a counterexample even when one exists. However, since
counterexamples guide search but are not crucial for progress, we resort to heuristics to find
them. For example, we can query a constraint solver to find structures of small, bounded
size (or finitary witnesses for infinite ones, which we call pseudo-models) that witness the
unsoundness of candidate axioms.

Beyond soundness and efficiency, we also want axioms to be independent of each other. In
other words, no single axiom should be logically implied by the other axioms. For example,
suppose we have discovered the axiom for transitivity,

∀x.∀y.∀z.(R(x, y) ∧R(y, z)→ R(x, z)) (5.5)

and the synthesizer proposes a similar axiom

∀w.∀x.∀y.∀z.(R(w, x) ∧R(x, y) ∧R(y, z)→ R(w, z)) (5.6)

Both axioms are sound, but we would like to discard the latter because it is logically implied by
the former. The problem of checking independence, i.e., whether a set of axioms {ψ1, . . . , ψn}
implies a candidate axiom φ, can be solved in this setting by checking the validity of∧

i

ψi → φ (5.7)

We can build an independence checker using VS, which is a validity procedure for arbitrary
structures and signatures, and in this case, it can be realized using a semi-decision procedure
for first-order validity. If we are able to prove 5.7 valid, then we discard φ. Otherwise, we
add it to the growing set of axioms.

Despite our (unavoidable) reliance on semi-decision procedures and heuristics, our tool is
able to find axiomatizations effectively. Given the description of the target class ψ (5.1), our
tool finds the following axioms for reflexivity, symmetry, and transitivity (see next page):

140

∀x.R(x, x)

∀x.∀y. (R(x, y)↔ R(y, x))

∀x.∀y.∀z. (R(x, y)→ (R(x, z)→ R(y, z))) (5.8)

The reader may be wondering: at what point does the synthesis loop stop? When is
an axiomatization complete, or good enough? What does good enough mean? These are
interesting and tricky questions (as discussed in Section 5.1), and answers depend heavily on
the specific problem, which makes automation very hard.

In the case of relations defined by a partition, proving completeness of a set of axioms A
turns out to be subtle. Intuitively, we want to know whether for any structure that satisfies A
there is a function f such that formula 5.1 holds (a second-order quantification over functions).
The difficulty with proving this, intuitively, is that one needs to select a representative from
each equivalence class of R. For example, if R(a, b) holds, then it should be the case that
f(a) = f(b), but there are many choices for this element. Proving the existence of a suitable
function f is difficult to automate (in general it seems to require the axiom of choice), and
we did not implement a completeness checker for this example.

5.3 THE AXIOM SYNTHESIS PROBLEM

In this section we define the problem of study. We first introduce some useful concepts.

5.3.1 Preliminaries

We formulate the problem of axiom synthesis as parameterized by an abstract logic L:

Definition 5.1 (Abstract Logic). An abstract logic L is a tuple (F ,S, |=) where

• F is a set of formulae.

• S is a class of models.

• |= ⊆ S × F is the binary satisfaction relation.

Satisfaction and Entailment We say M satisfies φ if M |= φ holds. Equivalently, we
say φ holds in M or M is a model of φ or φ is true in M . Let M ∈ S be a model, C ⊆ S
be a subclass of models, T ⊆ F be a subset of formulae, and φ ∈ F be a formula. We say
M satisfies T , written M |= T , to mean M |= φ for every φ ∈ T . We lift this to a class of

141

models C and write C |= φ (or C |= T) if every model M ∈ C satisfies φ (resp. satisfies T).
We also use |= to denote logical entailment. We say φ is entailed by T , written T |= φ, to
mean that every model of T satisfies φ.

Theories and Models A theory is a set of formulae T ⊆ F that is entailment closed,
i.e., for every φ ∈ F , if T |= φ, then φ ∈ T . The theory of a class of models C, denoted by
Th(C), is the set {φ ∈ F | C |= φ} of formulae that hold in all models in C. The dual of this
view is the class {M ∈ S | M |= T} consisting of all models that satisfy a set of formulae
T , which we denote by Mod(T). Observe that the larger the theory, the smaller its class of
models, i.e., if T ⊆ T ′ then Mod(T ′) ⊆ Mod(T). In fact, taking the two partially-ordered
sets (2F ,⊆) and (2S ,⊇), the monotonic functions Mod : 2F → 2S and Th : 2S → 2F form a
monotone Galois connection [98, 99], since for any set of formulae T and class C we have
T ⊆ Th(C)⇔ Mod(T) ⊇ C.

L-Elementary Class One consequence of the above Galois connection is that for any C ⊆ S
we have Mod(Th(C)) ⊇ C. We distinguish a special case, namely, when Mod(Th(C)) = C.
We refer to such a class C as L-elementary. One can see from the above definitions that a
class is L-elementary if and only if it can be defined as Mod(T) for some theory T . This is
inspired by the concept of an elementary class from model theory [100], and it informs our
definition of completeness in Section 5.3.2.

5.3.2 A Model-Theoretic Formulation of Axiom Synthesis

The model-theoretic axiomatization problem is parameterized by an abstract logic L =

(F ,S, |=). The objective is to axiomatize a target class of models C ⊆ S using formulae in F .
We use the word axiom for any formula in F that is true in all models in C, equivalently,
φ ∈ Th(C)2.

We typically want a mutually-independent set of axioms, i.e., one where no single axiom
follows from the others. A set of formulae T ⊆ F is mutually independent if T \ {φ} ̸|= φ for
every φ ∈ T .

Definition 5.2 (Finite Axiomatization). Given an abstract logic L = (F ,S, |=) and target
class C ⊆ S, a finite set A ⊆ F is said to be an axiomatization of C if C |= A. Additionally,
an axiomatization is said to be non-vacuous if A contains no tautologies over S, and it is
mutually independent if A is also mutually independent.

2In practice, we focus on discovering simple (e.g., short) axioms.

142

S

Mod(φ1)

Mod(φ2)

Mod(φn)

C

Figure 5.2: Model-theoretic axiomatization.

We develop algorithms for synthesizing sound, non-vacuous, and mutually-independent
finite axiomatizations in this chapter3.

In the space of models, axiomatization can be viewed as over-approximating C as a subclass
of S using independent axioms A. Consider Figure 5.2. We see that an axiom φ corresponds
to a class of models Mod(φ) ⊇ C such that φ is satisfied everywhere in that class. As the set
A grows, the space of models shrinks to

Mod(A) =
⋂
φ∈A

Mod(φ) (5.9)

as fewer and fewer models satisfy every axiom. The dual perspective gives the theory of the
axioms Th(A) = {φ ∈ F | A |= φ}, which grows with A. For any axiomatization A, the
theory of A is contained in the theory of C, i.e., Th(A) ⊆ Th(C).

Axiomatizations are also equipped with a natural partial order on their theories.

Definition 5.3 (Precision Order on Axiomatizations). Let A and A′ be axiomatizations of
C according to Definition 5.2. We say A is more precise than A′ if Th(A) ⊃ Th(A′).

We focus on finding axiomatizations that are as precise as possible, with the ideal scenario
being a complete axiomatization.

As discussed in Section 5.1, although it is tempting to think of a complete axiomatization
as an axiomatization A such that Mod(A) = C, it may happen that C ⊂ C∗ := Mod(Th(C)),
i.e., C is not L-elementary, and hence the models of any axiomatization of C will always be a
strict superset of C. We hence use the following notion of completeness:

3 Note that mutual independence entails non-vacuity since tautologies are entailed by the empty set of
axioms. However, we state non-vacuity explicitly as it is a basic property of axiomatizations.

143

Definition 5.4 (Complete Finite Axiomatization). A finite axiomatization A is said to be a
complete axiomatization for C if Th(A) = Th(C).

This definition allows for completeness with respect to the expressive power of L. Since
Th(A) ⊆ Th(C) for any axiomatization A, a complete axiomatization is the most precise, i.e.,
has the largest possible theory among all axiomatizations of C.

Discussion on axioms for proof systems While our formulation is model-theoretic, it
is of course useful in the context of proof systems as well. A proof system is a set of facts
along with rules that allow one to infer judgments of the form Γ ⊢ φ, which mean that φ is
derivable from Γ using the rules. Let us assume a proof system that is sound and strongly
complete over all models S, or, formally, Γ ⊢ φ⇔ Γ |= φ. An axiomatization is then sound
for the proof system as well: if A is an axiomatization of C per Definition 5.2 and A ⊢ φ,
then φ ∈ Th(C). Observe that the completeness criterion in this case also reduces to our
definition using the completeness of the proof system. Let A be an axiomatization that is
complete for C per Definition 5.4, i.e., A |= φ⇔ φ ∈ Th(C). Using the soundness and strong
completeness of the proof system, we get that A ⊢ φ ⇔ φ ∈ Th(C). Therefore A is also
complete for the theory of C with respect to the proof system. In our presentation we do
not explicitly consider axioms for proof systems; we concentrate only on the model-theoretic
formulation.

5.4 LEARNING-BASED AXIOM SYNTHESIS FRAMEWORK

In this section, we describe the Learning-based Axiom Synthesis (LAS) framework to
synthesize precise or complete axiomatizations. We argue that effective axiom synthesis
algorithms can be built by implementing the LAS framework for domains of interest. We
describe the atomic components of the framework in Section 5.4.1, the high-level algorithm
which uses the components in Section 5.4.2, and in Section 5.4.3 we formulate a constraint-
based synthesizer used for our instantiations of LAS (Sections 5.5 and 5.6).

5.4.1 Components of the LAS Framework

We now develop the set of independent functional components that underlie LAS. Instan-
tiating LAS for a given domain requires the implementation of these components for that
domain. The components are parameterized by an abstract logic L = (F ,S, |=) and a target
class C ⊆ S, which we fix throughout this section. We describe the components below.

144

• Soundness checker: A procedure dubbed VC (validity over C), which takes as input
a formula φ ∈ F and determines whether φ is an axiom for C, i.e. whether C |= φ

Although soundness can be determined using an axiomatization in L, note that having
an axiomatization in L is certainly not a requirement for building VC. We explore two
approaches. For the domain of modal logic, we build VC using an axiomatization in first-order
logic, the axioms of which do not indicate the modal axioms in any reasonable sense. For
the domain of languages with Kleene star, we build VC using a reference implementation of
operations on regular languages.

• Independence checker: A procedure dubbed VS (validity over S), which takes a
set of axioms A ⊆ F and an axiom φ ∈ F as inputs and determines whether φ is
independent of A, i.e. whether A ̸|= φ. Note that the entailment is over all models in
S.

• Counterexample generator: A procedure dubbed Cex, which takes as input a formula
φ ∈ F that is not an axiom of C and produces a pseudo-model pm as a counterexample
to φ.

A natural notion of a counterexample for φ is a model M ∈ C such that M ̸|= φ. In many
domains, however, it may be the case that most (or even all) models in C are infinite (see
Section 5.6). Therefore, we require for such domains the definition of finitely-representable
objects called pseudo-models, along with a witness map W that associates to every pseudo-
model a set of formulae that it rules out. A pseudo-model pm is said to be a counterexample to
φ if and only if φ ∈ W(pm). Pseudo-models witness the existence of models in C that rule out
unsound candidate axioms, and often we can precisely describe these models with a mapping
M that maps a pseudo-model pm to the setM(pm) ⊆ C of models indicated by pm. When we
have the mappingM, one natural definition forW(pm) is the one that rules out any candidate
that is false in all models from M(pm), i.e. W(pm) = {φ ∈ F | ∀M ∈ M(pm), M ̸|= φ}.
These notions are reminiscent of those from abstract formulations of learning which associate
with any sample a set of concepts that the sample is consistent with (e.g. [101]).

As an example, suppose we are working with a class of models that have as their domain
the set of integers. Consider an unsound candidate axiom φ := ∀x. f(x) = x, where f is
uninterpreted. One possible pseudo-model pm might specify that f(1) = 2 while leaving
f unspecified everywhere else. We can take M(pm) to be the set of all models that have
f(1) = 2, with W stipulating that φ ∈ W(pm) because φ is already false with the partially
defined f (and extending f cannot help). Thus pm is a finitely-presented counterexample to

145

φ, but it is not a model, since it does not specify the value of f on all integers. The notion
of pseudo-models will vary by domain, and we present the specifics where relevant.

• Completeness checker: A procedure dubbed CC, which takes as input a set of axioms
A and determines whether A is a complete axiomatization in the sense of Definition 5.4.

As discussed earlier, building CC is difficult, especially when we have C ⊂ C∗ := Mod(Th(C)).
Therefore, we view the completeness checker as an optional component in the LAS framework,
and typically we would only consider implementing it when C∗ = C, where we can make use
of knowledge about the target class C. In general, we aim to find axiomatizations that are as
precise as possible.

• Formula Synthesizer: A procedure dubbed LearnerW , which takes as input a set
PM of pseudo-models and a set Avoid of formulae and synthesizes a formula φ ∈ F
such that φ /∈ W(pm) for every pm ∈ PM and φ ̸∈ Avoid. Note that the procedure is
parameterized by the domain-specific map W . We describe a formulation for LearnerW
using SMT solvers in Section 5.4.3.

We demonstrate in the following sections that, by building the various components described
above, it is possible to realize effective axiom synthesis for different domains using a single
framework. Building effective components is crucial to the success of axiom synthesis in LAS;
we make contributions in this respect by implementing variants of the above components for
two domains with complex requirements.

5.4.2 The Core LAS Algorithm

Here we describe the core algorithm for the LAS framework, which utilizes the components
described in Section 5.4.1. We make two simplifications for presentation: (1) we assume
all components implement decision procedures and (2) we exclude completeness checking,
given that it is optional and there are many possible variants for incorporating it within the
algorithm. After describing the core algorithm we discuss how it works in general without
the simplifications.

The core of the LAS framework is presented in Algorithm 5.1. It is parameterized by a logic
L and target class C, for which we must implement the soundness checker VC, independence
checker VS, counterexample generator Cex, and the formula synthesizer LearnerW .

The algorithm maintains a set A of discovered axioms, a set PM of pseudo-models, and
a set Avoid of formulae, all initially empty. It synthesizes axioms in a loop until a timeout

146

parameters: Logic L = (S,F , |=), target class C ⊆ S, and timeout
imports: VC, VS, Cex, LearnerW over L, C
output: Axioms A ⊆ F for C

1: procedure LAS:
2: A,PM ,Avoid ← ∅
3: repeat
4: φ← LearnerW(PM ,Avoid) ▷ Get a proposal not ruled out by counterexamples
5: sound ← VC(φ)
6: if sound then
7: independent ← VS(A,φ)
8: if independent then
9: A← A ∪ {φ}

10: else// Rule out φ and continue
11: Avoid ← Avoid ∪ {φ}
12: continue
13: else// Get counterexample and continue
14: pm ← Cex(φ)
15: PM ← PM ∪ {pm}
16: until timeout
17: return A

Algorithm 5.1: Core LAS Algorithm.

is reached (lines 3-16), at which point it returns A. In a given iteration of the loop, with
discovered axioms A = {ψ1, ψ2, . . . , ψn}, it ensures ψi is independent of {ψj | 1 ≤ j < i},
assuming the ψi are enumerated in order of discovery. Additionally, for every ψ ∈ A, the
algorithm ensures that ψ /∈ W(pm) for every pm ∈ PM .

At the head of the loop, the algorithm queries Learner for a new candidate φ which is
neither ruled out by the current counterexample pseudo-models nor a member of the set
Avoid of formulae (line 4). The algorithm checks whether φ is sound using VC (line 5). If
sound, it checks for independence from A using VS (line 7). If φ is independent, the algorithm
adds it to A and continues to the next iteration of the loop to find more axioms (line 9). If
not independent, i.e., φ is entailed by A, the algorithm discards φ (adding it to the Avoid

set to prevent it from being proposed in the future) and goes back to the head of the loop to
get another candidate (lines 11-12). If the soundness check fails, the algorithm queries Cex

for a pseudo-model pm such that φ ∈ W(pm) and adds it to PM before returning to the
head of the loop (lines 14-15).

We now discuss some technical details about how the algorithm works in the general case
without the simplifications.

147

Nonterminating Procedures. In general, the components described in Section 5.4.1 may
only be realizable as nonterminating procedures. For example, in Section 5.5 we instantiate
the framework for modal logics, where VS is implemented with a procedure for first-order logic
validity, which can only be a semi -decision procedure that halts and returns true on valid
formulae but may not terminate on invalid formulae. Therefore, we modify each component
to take an additional input fuel ∈ N that models a resource bound and ensures termination.
For example, we modify VC in this way so that for every fuel ∈ N and φ ∈ F we have that
VC(φ, fuel) always terminates, saying either that φ is an axiom or is not an axiom, or else
Unknown. This allows us to stage the various procedures as terminating sub-procedures
which we can call iteratively with increasing fuel .

With this modification, we must also extend the algorithm to make decisions when a
component returns Unknown. If Cex returns Unknown (line 14), we can discard φ after
adding it to the Avoid set, which rules it out from future proposals, and continue searching
for more axioms without adding a counterexample. If Learner returns Unknown, we can
increase its fuel or exit and return A. If VC returns Unknown on a given axiom φ, we could
add φ to the list of axioms and emit a warning that φ may not be sound. We could also
discard φ (risking that we do not find a useful, sound axiom) or increase fuel and rerun VC

on φ. Similarly, if we cannot prove independence from A for a given sound axiom using VS,
we must choose between running again with more fuel , keeping the potentially redundant
axiom, or discarding it. Which choices are effective will vary by setting, and we leave them
up to the implementation.

Mutual Independence Observe that the axioms A returned by the algorithm are not
necessarily mutually independent. The algorithm only ensures that each axiom is independent
from those discovered before it. This is a practical choice, since finding a minimal mutually-
independent subset of A that covers A could require an exponential number of calls to VS. In
many cases it may be preferable to have a larger set of simple axioms rather than a smaller
set of complex axioms. However, if we assume that the Learner component outputs candidates
in order of increasing complexity, it may happen that a simple axiom discovered early may
be entailed by a combination of more complex axioms discovered later. One way to address
this is to run the algorithm to obtain a set of axioms A = {ψ1, ψ2, . . . , ψn}, and then use VS

to remove ψ1 from A if it is entailed by A \ {ψ1}. We can repeat this process with ψ2 and
A \ {ψ1}, and continue until each remaining axiom is not entailed by the others, using only a
linear number of calls to VS.

148

Completeness Check If it is possible to check completeness, then the algorithm can use
completeness as a termination condition. However, it may not make practical sense to check
completeness each time a new axiom is added to A as it could be expensive. Other choices
include checking completeness at the end of synthesis or checking at regular intervals. Again,
these are choices that depend on the domain and are left up to the implementation.

5.4.3 Realizing the Learner using an SMT Solver

We implement a generic learner parameterized by a logic (syntax and semantics), which
synthesizes expressions that are not ruled out by any of a given set of pseudo-models. We use
established constraint solving techniques to synthesize formulae of bounded height (we assume
that the logic has a bounded number of constants). Note that the constraints encoding
whether a formula is ruled out by a pseudo-model are determined by the domain-specific map
W . We thus require that, for any pseudo-model pm, the constraints encoding φ /∈ W(pm) are
expressible as a quantifier-free first-order formula4. Consequently, the synthesis of bounded-
depth logical expressions reduces to quantifier-free satisfiability and can be accomplished
(often) with an SMT solver. More precisely, given a bound b on the depth of expressions, we
can use a set of Boolean variables Vb to encode choices for how the nodes in the parse tree
of the expression are to be filled. For any fixed pseudo-model pm, we then write a formula
Allowedpm(Vb) that constrains the expression (represented by an assignment to Vb) so that it
is not ruled out by pm. We then check the satisfiability of the formula:∧

pm∈PM

Allowedpm(Vb) (5.10)

conjoined with a constraint that rules out all the formulae in the set Avoid . If satisfiable, we
can extract the expression from the assignment to Vb in the satisfying model. We implement
this learner for the required logic in each setting.

5.5 AXIOMATIZING CLASSES OF FRAMES IN MODAL LOGIC

In this section, we instantiate the LAS framework for the setting of modal logic and the
problem of axiomatizing first-order definable classes of frames, which are first-order structures
over a single binary “accessibility” relation R. Section 5.5.1 provides background, Section 5.5.2

4Evaluating operators like universal quantification on a pseudo-model with a finite domain can be expressed
as a quantifier-free formula using a conjunction over the elements of the domain of the pseudo-model.

149

M,w |= ⊤ always
M,w |= p iff p ∈ V (w)

M,w |= ¬φ iff M,w ̸|= φ

M,w |= φ ∨ φ′ iff M,w |= φ or M,w |= φ′

M,w |= φ ∧ φ′ iff M,w |= φ and M,w |= φ′

M,w |= □φ iff M,w′ |= φ for every (w,w′) ∈ R
M,w |= ♢φ iff M,w′ |= φ for some (w,w′) ∈ R

Figure 5.3: Semantics of Modal Logic

explains the components of the framework and discusses nuances for this particular setting,
and Section 5.5.3 describes details of the implementation and the axiomatizations we find.

5.5.1 Modal Logic and Correspondence Theory

We now briefly review the syntax and semantics of propositional modal logic over Kripke
structures. We are interested in axiomatizing properties of the accessibility relation for
Kripke structures using modal logic formulae. In particular, we aim to find axiomatizations
of first-order definable properties that are classically studied in correspondence theory. We
review some background from correspondence theory following the syntax and semantics of
propositional modal logic.

Syntax and Semantics of Modal Logic We consider propositional modal logic over
Kripke structures (henceforth called models) of the form M = (W,R, V), consisting of a set
of worlds W an accessibility relation R ⊆ W ×W , and a valuation V : W → P(Prop) that
maps worlds to a subset of propositions from a finite set Prop. We refer to a pair F = (W,R)

as a frame, and in the context of a specific model M = (W,R, V) we refer to F as the frame
of M . Frames are the basic object we aim to axiomatize.

Formulae in the logic are given by the following grammar:

φ ::= ⊤ | p ∈ Prop | ¬φ | φ ∨ φ′ | φ ∧ φ′ | □φ | ♢φ (5.11)

The formulae ♢φ and □φ can be read in the usual way as “it is possible that φ” and “it is
necessary that φ”, respectively. The semantics of modal logic in Figure 5.3 defines when
a formula is true at a given world w ∈ W in a model M = (W,R, V). These are standard
syntax and semantics of propositional modal logic [92].

150

Correspondence Theory in Modal Logic Modal Correspondence Theory [93] studies
connections between modal logic formulae and classical first-order properties of frames. As
an example, the modal formula □p→ p corresponds to the reflexive frames, i.e., those for
which ∀x.R(x, x) holds when we treat a frame F = (W,R) as a first-order structure. The
precise correspondence is the following:

Theorem 5.1 ([93]). For any frame F = (W,R), the accessibility relation R is reflexive if
and only if the modal formula □p → p is true in M = (W,R, V) for all valuations V and
worlds w.

Many correspondences of this kind are known to exist between modal formulae and the
accessibility relation, and they rely on the notion of frame validity, defined as follows:

Definition 5.5 (Frame Validity). A modal formula is valid in a frame F = (W,R), written
F |=f φ, if (W,R, V), w |= φ for every world w ∈ W and every valuation V : W → P(Prop).

For intuition, let us work through the proof of Theorem 5.1.

Proof of Theorem 5.1. Soundness (⇒). Suppose F = (W,R) is a reflexive frame, i.e.,
∀x.R(x, x) is true, and let V,w be an arbitrary valuation and world, respectively. Sup-
pose (W,R, V), w |= □p, i.e., every world accessible from w has p true under V (if not, the
implication is already true). We have that (W,R, V), w |= p holds because R(w,w) holds.
Note that this direction of the proof corresponds to what VC checks in our framework.

Completeness (⇐). We prove the contrapositive. Intuitively, we pick a w for which R(w,w)
is false, and from the form of the axiom we pick a valuation V that makes the axiom false at
w. (We explain how we automate some of this intuition in Section 5.5.2.) Formally, suppose
F is not reflexive. That means there is some w ∈ W where R(w,w) does not hold. Let V
be a valuation that makes p false at w and true at all w′ for which R(w,w′) holds. Then
(W,R, V), w |= □p, but (W,R, V), w ̸|= p. QED.

Our goal now is to instantiate the LAS framework to find modal logic formulae that
characterize various classes of frames, as described above. Note that the axioms we aim to
find in this setting can be interpreted as axiom schemas. For instance, the formula □p→ p

can soundly be interpreted as a schema □α → α, where α is a placeholder for a modal
formula, i.e., all instances of this schema are valid in the class of reflexive frames, and the
same can be said of the other classes we axiomatize. We refer the reader to [93] for more
about correspondence theory.

151

5.5.2 Instantiating the LAS Framework for Modal Logic

We now instantiate the framework from Section 5.4 for the problem of synthesizing modal
logic axioms that characterize a target class of frames. We aim to axiomatize classes of frames
that are definable in first-order logic, i.e., classes defined by a first-order logic sentence ψ over
the relation symbols R,=, e.g., reflexive frames defined by ψ := ∀x.R(x, x). Because modal
logic formulae can be translated to first-order logic, the components make use of existing
validity procedures for first-order logic. We discuss this translation next.

Definition 5.6 (Translation of Modal Logic to First-Order Logic). Given a modal logic
formula φ, we can translate φ into a first-order logic formula ψ(x) such that (W,R, V), w |= φ

if and only if M ′ |= ψ(w), where M ′ extends the frame (W,R) (as a first-order structure) with
interpretations for unary predicates P , one for each proposition p ∈ Prop. Each predicate
P holds for the worlds w for which p ∈ V (w). The translated formula ψ(x) := ml2fox(φ)

is defined inductively in the structure of φ as shown below, with x, y, etc. drawn from an
infinite supply of fresh variables:

• ml2fox(⊤) = ⊤

• ml2fox(p) = P (x)

• ml2fox(¬φ) = ¬ml2fox(φ)

• ml2fox(φ ∨ φ′) = ml2fox(φ) ∨ml2fox(φ
′)

• ml2fox(φ ∧ φ′) = ml2fox(φ) ∧ml2fox(φ
′)

• ml2fox(□φ) = ∀y. (R(x, y)→ ml2foy(φ))

• ml2fox(♢φ) = ∃y. (R(x, y) ∧ml2foy(φ))

Recall that the LAS framework involves the procedures VC, VS, and Cex, whose respective
purposes are to check soundness, check independence, and generate counterexamples for
candidate axioms. In this setting, we aim to find axioms for a subclass of frames, and thus S
is the class of all frames and C is a subclass of S, e.g., reflexive frames. The logic L is modal
logic with frame validity for the entailment relation (Definition 5.5). In this setting, we also
implement a completeness checker CC. We explain each component next and discuss some
details for the Learner in Section 5.5.3.

Instantiating VC. We reduce the soundness condition for modal logic axioms over a
class of first-order definable frames C to the validity problem in first-order logic (more

152

precisely, the relational theory of equality and uninterpreted relations) by using the first-order
characterization for C. Recall the proof of soundness for Theorem 5.1. Suppose we are
axiomatizing the class of reflexive frames, which are characterized by the first-order sentence
∀x.R(x, x). To check the proposed axiom □p→ p is sound (true in all frames from C), we
can check the validity of the first-order sentence ∀x.R(x, x)→ (∀x.ml2fox(□p→ p)). More
generally, for a class of frames defined by a first-order sentence ψ, we check the soundness of
a candidate modal axiom φ by checking the validity of

sound(ψ, φ) := ψ → ∀x.ml2fox(φ) (5.12)

Observe that the ml2fo translation turns propositions into uninterpreted unary relations,
and thus first-order validity of the translated formula requires the formula to be true for all
interpretations of the unary relations. This corresponds to quantifying over all valuations.
We can thus implement VC using any semi-decision procedure for validity in first-order logic
(see Section 5.5.3 for details).

Instantiating Cex. As discussed above, we reduce soundness to the relational theory of
equality and uninterpreted relations, which is recursively enumerable but undecidable. Since
satisfiability is not recursively enumerable, it is straightforward to show there can be no
complete procedure to find counterexample models for an unsound candidate φ, i.e., a model
of ¬sound(ψ, φ). However, our intuition is that finite counterexample models are enough to
efficiently synthesize many modal axiomatizations. Given a candidate φ that is not sound,
the component Cex produces a frame F = (W,R) ∈ C of a small, bounded size such that
F ̸|=f φ. Note that in this setting we can take pseudo-models to simply be finite frames F ,
withM(F) = {F} and φ ∈ W(F)⇔ F ̸|=f φ.

Instantiating VS. Given a set of modal axioms A = {φ1, . . . , φn} and a candidate axiom
φ, we want to check that φ is independent of A. That is, we want to check that there is a
frame F = (W,R) such that F |=f φi for each i but F ̸|=f φ. Checking the existence of such
a frame (i.e., independence) does not reduce to first-order validity, but is captured by the
second-order formula

∃(W,R).
∧
i

∀P.∀x.ml2fox(φi) ∧ (∃P ′.∃x.¬ml2fox(φ)) (5.13)

where P, P ′ are sequences of second-order variables corresponding to the unary predicates
produced by the ml2fo translations.

We approximate independence by checking whether there is such a frame F = (W,R) of
some small, bounded size. As for finding counterexamples to soundness, our intuition is that

153

small witnesses will exist to show the independence of modal axioms. We note that this
heuristic could cause independent axioms to be discarded if we insist on finding independence
proofs and there are only large frames witnessing independence. In principle, we can mitigate
that risk by increasing the size bound, but this proved unnecessary in experiments.

Instantiating CC. We now describe a heuristic procedure for completeness. Let us assume
a first-order characterization ψ for a class of frames and a set of sound modal logic axioms
A. Let us also assume, without loss of generality, that the propositions in each axiom are
disjoint, and let φ be the conjunction of the modal axioms in A.

The formula φ is complete for the class of frames described by ψ if for all frames F ,
whenever F |=f φ (frame validity; see Definition 5.5), then F |= ψ (first-order validity). In
other words, we need to check the validity (over all frames) of the second-order sentence

(∀P.∀w.ml2fow(φ))→ ψ (5.14)

where once again P is a sequence of second-order variables introduced by ml2fow(φ).
Following a common pattern for completeness proofs in correspondence theory, we can try

to prove the contrapositive of 5.14: assume the first-order characterization ψ does not hold
on some frame and then try to find a specific valuation and world that violate φ.

Using this intuition from manual proofs, we reduce the problem to a stronger version where
we try to find a finite set of worlds {w1, . . . , wn} and a valuation on them that violates φ.
For worlds outside {w1, . . . , wn}, we simply assume that the valuation uniformly assigns the
same default value vdef . For instance, suppose we only have one atomic proposition p. Then,
instead of the second-order sentence 5.14, we can check the validity of the following first-order
sentence:

(∀w1, . . . , wn.∀v1, . . . , vn, vdef .∀w.ml2fo′w(φ))→ ψ (5.15)

where v1, . . . , vn, vdef range over Booleans (modeling the valuation of P on w1, . . . , wn and
the default value), and where ml2fo′w(φ) is ml2fow(φ) where each predicate occurrence P (w)
is defined as:

P (w) := ite(w = w1, v1, ite(w = w2, v2, . . . ite(w = wn, vn, vdef) . . .)) (5.16)

Notice that the validity of Formula 5.15 implies the validity of Formula 5.14. Furthermore,
Formula 5.15 is in first-order logic (as valuations have been replaced by a finite set of Boolean
variables), and we can use automatic procedures for first-order logic to solve validity. This
approximate checking for completeness works well in practice (in fact, it works for 14/17 of
the modal axiomatizations we explore in Section 5.5.3).

154

5.5.3 Implementation and Evaluation

We implemented the procedures VC, VS, Cex, and CC as described in previous sections,
reducing the problems to SMT queries in Z3 [11]. We built an axiom synthesizer (Learner)
for modal logic and combined the components as described in Algorithm 5.1. Our artifact
can be found at: https://zenodo.org/records/7072506.

Table 5.1: First-order descriptions used in Table 5.2.

FO Description Definition
Reflexive ∀x.R(x, x)
Transitive ∀x, y, z.(R(x, y) ∧R(y, z))→ R(x, z)
Symmetric ∀x, y.R(x, y)→ R(y, x)
Euclidean ∀x, y, z.(R(x, y) ∧R(x, z))→ (R(y, z) ∧R(z, y))
Functional ∀x, y, z.(R(x, y) ∧R(x, z))→ y = z
Shift Reflexive ∀x, y.R(x, y)→ R(y, y)
Dense ∀x, y.R(x, y)→ ∃z.R(x, z) ∧R(z, y)
Serial ∀x.∃y.R(x, y)
Convergent ∀x, y, z.(R(x, y) ∧R(x, z))→ ∃w.R(y, w) ∧R(z, w)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Time (seconds)

(M5)
(M4)
(DB)

(D45)
(D5)
(D4)

(KB5)
(K45)
(C4)
(CD)

(C)
(D)

(�M)
(5)
(B)
(4)

(M) Unsound

Dependent

Final

Figure 5.4: Distribution of candidate axioms proposed for each modal logic. The x-axis shows
the time at which each axiom was proposed, and each horizontal line shows the duration of
synthesis (not including the completeness check) cut off at 20 seconds (see Table 5.2 for the
full duration). “Unsound” refers to axioms that failed the soundness checker VC; “Dependent”
refers to axioms that were proven sound but were entailed by later proposals and pruned in
a post-processing pass; “Final” indicates the axioms that our tool outputs given in Table 5.2.

155

https://zenodo.org/records/7072506

Implementation Details Let ψ be a first-order description for a class of frames for which
we want to synthesize modal axioms, let φ be a candidate modal axiom, and let A be a set
of sound modal axioms that have already been synthesized.

For soundness, VC generates an SMT query checking whether ψ ∧ ¬∀P.∀w.ml2fow(φ)

is satisfiable, where P stands for a sequence of unary relation symbols corresponding to
propositions in φ. This is equivalent to ψ ∧∃P.∃w.¬ml2fow(φ). As discussed in Section 5.5.2,

Table 5.2: Synthesis results for modal logics. For each logic, we synthesized modal axioms
from the first-order description of the logic (see Table 5.1 for the formulae used). The
Reference Axioms column shows canonical axioms studied in the literature; the LN column
shows the time taken by the learner LearnerW ; the CX column shows the time taken by the
counterexample generator Cex; the SN column shows time taken by the soundness checker
VC; the CM column shows the time taken by the completeness check. Times are in seconds.

Logic FO Desc. Synthesized Reference LN CX SN CM
(See Table 5.1) Axioms Axioms

(M) Reflexive ¬α ∨ ♢α □α→ α 9.9 0.00 0.06 0.03
(4) Transitive □α→ □□α □α→ □□α 22.7 0.01 0.03 1.01
(B) Symmetric ♢□α→ (♢α→ α) α→ □♢α 25.0 0.01 0.09 0.05
(5) Euclidean ♢□α→ □α ♢α→ □♢α 29.7 0.01 0.13 -
(□M) Shift Reflexive □(α→ ♢α) □(□α→ α) 27.7 0.01 0.14 0.04
(D) Serial ♢⊤ □α→ ♢α 26.9 0.00 0.03 0.04
(C) Convergent ♢□α→ □♢α ♢□α→ □♢α 23.4 0.05 0.07 -
(CD) Functional ♢α→ □α ♢α→ □α 46.8 0.01 0.04 0.06
(C4) Dense ♢α→ ♢♢α □□α→ □α 24.2 0.01 0.13 0.05
(K45) (4)+(5) ♢♢α→ ♢α □α→ □□α 27.0 0.01 0.15 0.82

¬♢α ∨□♢α ♢α→ □♢α
(KB5) (B)+(5) ¬α ∨□♢α α→ □♢α 17.7 0.00 0.14 43.06

□♢α ∨□¬α ♢α→ □♢α
(D4) (D)+(4) □♢α→ ♢α □α→ ♢α 55.2 0.01 0.33 0.17

♢♢α→ ♢α □α→ □□α
(D5) (D)+(5) ♢⊤ □α→ ♢α 30.8 0.01 0.19 11.66

□¬α ∨□♢α ♢α→ □♢α
(D45) (D)+(4)+(5) ♢⊤ □α→ ♢α 43.5 0.01 0.15 6.41

□♢α ∨□¬α □α→ □□α
♢♢α→ (□α ∨ ♢α) ♢α→ □♢α

(DB) (D)+(B) α→ ♢♢α □α→ ♢α 36.2 0.01 0.18 0.05
¬α ∨□♢α α→ □♢α

(M4) (M)+(4) ♢α ∨ ¬α □α→ α 19.3 0.00 0.10 0.74
♢♢α→ ♢α □α→ □□α

(M5) (M)+(5) ♢α ∨ ¬α □α→ α 13.1 0.00 0.14 -
□□α ∨ ♢¬α ♢α→ □♢α
♢□α→ α

156

the translated formula ml2fow(φ) replaces propositions with uninterpreted unary relations,
and thus the quantification of P can be removed, giving the formula ψ ∧ ∃w.¬ml2fow(φ) in
the first-order theory of equality and uninterpreted relations. If this formula is not satisfiable,
then φ is sound; otherwise, we proceed to generate a counterexample as in Algorithm 5.1.

For independence, VS queries the SMT solver to find a bounded frame witnessing A ̸|= φ.
If such a bounded frame exists, then the axiom is independent, and we discard the proposal
otherwise.

We optimize the implementation for this domain by merging the SMT query for checking
independence and the SMT query for synthesis (i.e. Learner). This is sound since we proceed
with a candidate axiom only if both queries are satisfiable. We found that not combining
these queries resulted in the synthesis of a large number of candidates that were immediately
ruled out by the independence checker. This essentially makes the algorithm enumerate all
semantically equivalent variants of a formula and it resulted in performance similar to naive
enumeration (which we show is less efficient in our evaluation below). The use of a single
query also results in only a small number of non-independent axioms being proposed, as we
show in our evaluation (see Figure 5.4).

For counterexamples, Cex also queries the SMT solver to find a bounded frame satisfying
ψ but not φ. In our evaluation, we use a size bound of 4. Note that since the counterexample
frames are bounded, VS and Cex are guaranteed to terminate. However, VC tries to decide
a first-order sentence using a semi-decision procedure so it may not terminate. The fuel

parameter determines the timeout (Section 5.4.2) in this case.

Evaluation Results We attempted 17 historically-studied classes of modal logic frames,
and we were able to synthesize complete axiomatizations for all of them. Our completeness
procedure in Section 5.5.2 verifies automatically that the axiomatization is complete with
respect to the FO description for 14 classes. We manually verified the completeness for the
other 3 classes.

We used a laptop with a 4-core (8-thread) Intel CPU i7-8550U and 16 GB of memory.
Table 5.2 shows the results of our evaluation with the synthesized axioms, reference axioms
studied in the literature, and the breakdown of time spent in each component. Figure 5.4
shows the distribution of candidate axioms proposed for each modal axiomatization, including
unsound proposals.

In our evaluation, we considered grammars that allowed all possible modal logic formu-
lae with one proposition, and the height of formulae was increased incrementally until 3.
Counterexample frames were bound to at most 4 worlds.

In all of the cases, the synthesizer effectively produces the complete axioms in less than a

157

minute. We believe that the main reason for this effectiveness is that we have an ideal type
of counterexample in modal logic: extremely small frames are already able to characterize a
class with a first-order description.

The axiomatizations synthesized by the tool, modulo small syntactic equivalences, corre-
spond closely to the reference axiomatizations we see in the literature (see Table 5.2). For the
class of serial frames, the tool found the axiom ♢⊤ while the reference axiom is □α→ ♢α.
We verified that the tool’s simpler axiom is indeed sound and complete. There may be
aesthetic reasons why humans avoid axioms with constants such as ⊤, and there are several
other frames where our tool generates axioms with constants.

For classes that are characterized by conjunctions of multiple first-order properties, note
that our tool does not know this fact, and often synthesizes a different set of axioms than
the union of the axioms for each property, such as (M5).

The completeness procedure failed in some cases. Recall that for completeness, we need to
check the validity of the second-order condition 5.14, which we handled using an incomplete
reduction to condition 5.15. But this reduction is not enough for some of the cases we
evaluated. For example, to prove completeness for the convergence axiom φ = ♢□α→ □♢α

(corresponding to the first-order description ψ = (R(x, y)∧R(x, z))→ ∃w.R(y, w)∧R(z, w)),
one has to show that for any non-convergent frame (satisfying ¬ψ), we can find a valuation
V such that ¬φ holds for some world w. To do this, we have to first find a witness to ¬ψ,
i.e., a world w and two worlds v1 and v2 with R(w, v1) and R(w, v2), such that v1 and v2

have disjoint successors in R. Then we can pick an atomic proposition α, and assign α to
all successors of v1 (which may be infinite), and ¬α to all successors of v2. Then φ is not
true at w because ♢□α is true, but □♢α is false. This proof requires us to find a valuation
that may vary on an infinite set of worlds (all the successors of v1 and v2) as opposed to the
finite-varying valuation in the reduction to condition 5.15.

Comparison with Brute-force Enumeration We evaluated a synthesis procedure that
uses brute-force enumeration without counterexamples for synthesis rather than constraint
solving with counterexamples. In terms of our core algorithm (see Algorithm 5.1), this
corresponds to implementing VC (needed for soundness) and VS (needed for independence
checking), but skipping Cex and having the Learner component simply enumerate formulae.

In this evaluation, Learner enumerates all modal logic formulae up to height 3 (which is
the maximum height used in our previous evaluation). For each enumerated candidate, we
perform the soundness check using VC and the independence check using VS as before.

We ran the enumerative procedure for all 17 modal axiomatizations (the enumeration is
naive and does not rule out any kind of symmetries), on a server with 32 Intel Xeon 8124M

158

CPUs and 72 GB of memory. We used a timeout of 3 hours for each modal axiomatization
setting.

In all 17 settings, brute force enumeration was unable to exhaustively search the space
for axiomatizations, while our technique was able to exhaustively search the space within
a minute. However, one can argue that exhausting the search space is unnecessary if the
synthesizer can produce a provably complete axiomatization earlier. This would require
running the completeness checker each time an axiom is added. Indeed, enumeration does
produce provably complete axiomatizations for 13 cases early on, and the time to reach such a
complete axiomatization was less than a minute in 5 cases and about 8-11 minutes in the other
8 cases. Note that this does not account for the additional time spent checking completeness
with each discovered axiom. However, for the 4 remaining settings where completeness cannot
be checked automatically, an enumerative tool that implements completeness checks with
each discovered axiom would have to run until the timeout of 3 hours. More importantly, the
enumerative tool’s final axiomatizations (terminated at 3 hours) were not complete for two
settings ((C) and (□M)), whereas our tool found complete axiomatizations for all settings
within a minute.

This evaluation suggests that although the synthesized axioms in each setting are short,
brute force enumeration is not promising and is unlikely to scale to more complex settings,
while using counterexamples to guide search with constraint-solving is significantly faster.
Moreover, early termination is not possible when completeness checks fail, and exhaustive
enumeration takes prohibitively long in these cases.

5.6 AXIOMATIZING LANGUAGES WITH KLEENE STAR

In this section, we instantiate the LAS framework to find axioms for languages with Kleene
star. Each model in this case consists of a set of languages over a finite alphabet that
is closed under the usual operations from formal language theory. Section 5.6.1 reviews
some background from language theory, Section 5.6.2 discusses nuances for this setting, and
Section 5.6.3 describes our implementation and results.

5.6.1 Language Models

Languages of finite words and the operations of concatenation, union, and Kleene closure
are fundamental concepts in computer science. Much work went into the discovery of axioms
for reasoning with these concepts (e.g. [94, 95, 96]), and we are interested in discovering such
axioms de novo. In particular, we want to axiomatize a class of algebraic structures over

159

the signature τ = (·, plus , ∗, 1, zero), which we refer to as the class of language models. The
symbols · and plus are binary function symbols corresponding to concatenation and union, ∗
is a unary function symbol corresponding to Kleene closure, and 1 and zero are constants
corresponding to the singleton language containing the empty word and the empty language,
respectively. The domain of a language model over an alphabet Σ consists of languages of
words over Σ, i.e., D ⊆ P(Σ∗). We review the standard language theory interpretations for
τ -symbols below.

Let x, y be languages over Σ. The operation plus : D ×D → D is interpreted as union:

x plus y := x ∪ y (5.17)

The operation · : D ×D → D is interpreted as the concatenation of languages:

xy = x · y := {w1w2 | w1 ∈ x,w2 ∈ y} (5.18)

where w1w2 denotes the concatenation of words defined in the usual way. The n-fold
concatenation of a language x with itself is given by:

x0 := {ϵ} xn+1 := xnx (5.19)

where ϵ is the empty word. The constants zero and 1 denote the empty language ∅ and the
singleton language {ϵ}, respectively. Finally, the operation ∗ : D → D forms the closure of a
language under concatenation with itself:

x∗ = ∗(x) :=
⋃
i∈N
xi (5.20)

For a fixed alphabet Σ, we refer to these models as Σ-language models. We write tMi for
the language denoted by t in a model M under variable assignment i. For example, if M
contains the languages a∗, {ϵ}, and ∅, then for an assignment i with i(x) = a∗ and i(y) = {ϵ}
we have (xy)Mi = a∗.

Note that language models need not consist of regular languages, and many equations
hold in some models and not others. For instance, we may have a model consisting of the
context-free language L = {anbn : n ∈ N}, as well as the languages formed by closing the
domain under concatenation, union, and Kleene closure (and also adding the languages for 0

and 1). In this model, it happens that the equation xy = yx is true. But of course, this is
not true for all language models: for example, we can take x to be the language {a} and y to
be the language {b} in any model that contains those languages.

160

5.6.2 Instantiating the LAS Framework for Language Models

We now describe how the main components of the framework are instantiated to find
equational first-order logic axioms for language models. Following the discussion above, we
can identify the class S to be all models over the signature τ = (·, plus , ∗, 1, zero), with C
consisting of all language models over finite alphabets, as defined in setting we make use of
only basic knowledge about the target class, which we discuss next.

It so happens that the equational theory (the set of all true universally-quantified equations)
of the class of Σ-language models coincides with a distinguished language model called RegΣ,
whose domain consists of all regular languages over Σ. The problem of axiomatizing the
equational theory of RegΣ has a long history. It was first posed by Kleene [102], with
several contributions toward axiomatization (e.g., [95, 96, 97]), and culminated in Kozen’s
finite axiomatization consisting of conditional and unconditional equations that were proven
complete for the equational theory [94]. Though we do not aim a priori to rediscover precisely
that axiomatization, it informs our choice to focus on finding equational axioms. Thus the
set of formulae F consists of universally-quantified equations in first-order logic over the
signature τ . We invite the reader in the remainder of this section to start fresh and naively
explore what is necessary to find axioms in this setting, and in particular, how to build VC

and Cex.
Instantiating VC. Our goal is to build a procedure that checks whether a candidate

equational axiom is true in the class C of language models. Suppose in particular that we
want to prove that a (universally-quantified) equation in n variables is true for all language
models (over arbitrary finite alphabets Σ). Assume we have a formula ∀x.t(x) = t′(x), for
some τ -terms t, t′ and a sequence of variables x, and we want to prove that for any language
model M , we have t = t′ for any assignment of variables to languages from the domain of
M . Observe first that it is necessary that t = t′ holds when each variable xi is assigned
the singleton language {xi}, where we treat each variable as a distinct alphabet symbol. If
not, then the equation does not hold in any language model containing these n singleton
languages {xi}. Call this singleton assignment s.

It turns out this condition is also sufficient for an equation to be true in all language
models (observed by Gischer [103], see also a detailed proof in [104]). The argument runs as
follows. Suppose for contradiction that the equation is true under the singleton assignment s
in some suitable model N , but the languages denoted by t and t′ are different for another
assignment i in a (possibly different) model M . Then, without loss of generality, we can
assume there is a word w ∈ tMi and w /∈ t′Mi . Since the equation holds under s in N , the
terms t, t′ must generate the same words over x when treated as regular expressions over the

161

alphabet x. It follows by a straightforward induction on t that membership of a word in the
language tMi is witnessed by such a word over x (say w is witnessed by wx). That is, the
language tMi has the form:

⋃
wx∈ tNs

i(wx) (5.21)

Membership of the word w in tMi is witnessed by w ∈ i(wx) for some word wx ∈ tNs , but this
is a contradiction because wx ∈ t′Ns and thus w ∈ i(wx) ⊆ t′Mi . Thus, for equational axioms,
the VC component can simply check that t and t′ are equivalent as regular expressions over x.

The preceding observation reduces the soundness of equational axioms to the equivalence
of regular expressions. We note that Kozen’s complete axiomatization [94] involves two
conditional equations. Building VC for conditional equations is more difficult, as it would
likely require proofs by induction. We leave such automation to future work, but note that it
does not fall outside the scope of the framework.

Instantiating Cex. It follows from above that the counterexample generator for false
equations over language models can always provide as a counterexample a finite prefix of a
canonical language model. For example, for the false equation xy = x, any language model
over Σ = {a, b} that has the languages {a}, {b}, and {ab} witnesses that the equation is false.
Of course, such a model must also contain the languages {aa} = {a} · {a}, {bb} = {b} · {b},
and many others (it must be closed under the operations). Intuitively, the counterexample
models, though infinite, can be witnessed finitely. As discussed in Section 5.4, we formalize
this with the concept of pseudo-models, and in this context language pseudo-models.

Definition 5.7 (Language pseudo-model). A language pseudo-model over an alphabet Σ is a
model over τ = (·,+, ∗, 1, 0). Its domain D is finite and consists of Σ-languages, and each
operation is a partial function on the domain. For every x ∈ Di, each operation f of arity i
is either undefined or else f(x) is the language given by the standard interpretation from
language theory.

The counterexample generator Cex produces language pseudo-models as counterexamples,
and the Learner can propose any equation that is not false in the pseudo-models it has seen
so far, with satisfaction defined as follows.

Definition 5.8 (Satisfaction in a language pseudo-model). An equation t = t′ is false
in a language pseudo-model M just when tMi and t′Mi are both defined and tMi ̸= t′Mi for
some variable assignment i. Otherwise, t = t′ is true in M (or satisfied by M), written as
M |=p t = t′.

162

For every language pseudo-model M and equation φ, we have:

M(M) = extensions(M) (5.22)

and φ ∈ W(M) ⇔ M ̸|=p φ⇔ ∀M ′ ∈M(M), M ′ ̸|= φ (5.23)

where extensions(M) denotes all language models that contain the domain of M and that
agree with the operations of M wherever they are defined. As an example, if the Learner

proposes the false equation xy = x, then Cex may produce a pseudo-model of size 3 with
domainD = {{a}, {b}, {ab}} and an interpretation of concatenation such that {a}·{b} = {ab}
and all other operations on all other elements are undefined. Such a pseudo-model is enough
to show the equation xy = x is false using an assignment that maps x to {a} and y to
{b}. Note that this pseudo-model does not rule out, for example, the false equation xx = x,
because xx is undefined for every x.

Instantiating VS. Unlike for modal logic, validity in the class S can be stated directly
in first-order logic, and thus VS is instantiated as a semi-decision procedure for first-order
validity. Given axioms φ1, . . . , φn, checking that a candidate axiom φ is independent from
the axioms φi amounts to checking that ψ :=

∧
i φi → φ is not valid, or equivalently, that ¬ψ

is satisfiable. Since satisfiability is hard to tackle directly, we instead choose to take failure
to prove dependence as a proxy for independence. We use VS to attempt a proof of ψ. If the
proof fails we add the axiom φ to the growing set of axioms, and otherwise we discard it.

Completeness. It is known that the equational theory of language models has no complete
finite axiomatization in terms of only equations [97]. And as mentioned, Kozen’s complete
axiomatization [94] involves two conditional equations. The proof of completeness relies on
the uniqueness of minimal deterministic finite automata for regular languages and involves
algebraically encoding the determinization and minimization constructions for such automata.
Automating the discovery of such a proof is very difficult and beyond the scope of this
chapter.

5.6.3 Implementation and Evaluation

We implemented this instantiation of the framework following the general algorithm
(Algorithm 5.1). Using this algorithm, we obtain a synthesizer for sound equations over
language models with the operations of concatenation, union, and Kleene star. Our artifact
can be found at: https://zenodo.org/records/7072506.

163

https://zenodo.org/records/7072506

Implementation Details The implementations of VC, VS, and Cex are based on the SMT
solver Z3 [11]. We discuss their implementation details in this section.

Suppose we have already synthesized a set A of (universally-quantified) equations, and
suppose that t = t′ is a candidate equation generated by Learner. VC employs the decision
procedure described in Section 5.6.2 to check the validity of t = t′ by checking the equivalence
of two regular expressions representing t and t′. We check the equivalence of regular expressions
by encoding an SMT query over the theory of strings and using Z3. If t = t′ is not valid, Cex
generates a large enough pseudo-model as described in Definition 5.7. We pre-compute a finite
portion of the canonical model of regular languages with Kleene star corresponding to small
regular expressions. When an axiom cannot be proven valid we look up this pseudo-model
for an instantiation that witnesses the non-validity of the candidate.

For VS, we use a procedure called natural proofs [27] to check the entailment A |= t = t′.
Natural proofs are semi-decision procedures for checking the validity of first-order formulae
using systematic quantifier instantiation. VS instantiates A with ground terms up to a certain
height and generates an SMT query whose unsatisfiability would imply A |= t = t′. This
query is a quantifier-free formula over the theory of uninterpreted functions, and hence the
SMT solver is guaranteed to terminate. If the query is satisfiable, it may still be the case
that A |= t = t′, but we treat it as if t = t′ is independent from A to avoid missing axioms.

We optimized our algorithm for this domain in our implementation by merging the SMT

query by VS and the SMT query by Learner (line 4 of Algorithm 5.1). This optimized version
is equivalent to the original algorithm since the core algorithm only proceeds with a candidate
equation if both queries are satisfiable.

Evaluation Results Recall that our signature is τ = (·, plus , ∗, 1, zero). We ran three
passes of the algorithm to synthesize equations with increasingly larger term grammars:

1. τ -terms of height 1 with 2 free variables,

2. τ -terms of height 2 with 2 free variables, and

3. τ ′-terms of height 2 with 3 free variables, where τ ′ is τ without the constants 0 and 1.

The set of axioms found in each pass is first pruned for redundant axioms that may be
entailed by others in the set. Recall that our independence check using VS only ensures
that axioms that are proposed later are not entailed by those that were proposed earlier;
the converse may not be true. This additional pruning is done using the first-order theorem
prover Vampire [90]. We treat the symbols in the signature as uninterpreted functions and
ask whether any axioms in the set are entailed by the others. The final set of axioms after

164

Table 5.3: Synthesis statistics for language models.

of Axioms Time (seconds)
Pass New Pruned Synthesis Pruning Cex Total

1 12 3 0.6 0.6 0.4 1.6
2 25 14 136.4 88.4 227.4 452.2
3 12 17 1821.5 70.0 760.2 2651.7

pruning in each pass is used as an initial set of axioms in subsequent passes. Note that in this
evaluation we run the core algorithm (Algorithm 5.1) multiple times, i.e., once for each pass.

Table 5.3 presents some statistics about our evaluation, including the number of axioms
synthesized in each pass, the total time taken in each pass, and a breakdown of the time
spent per component. The evaluation was performed on a machine with a 4-core (8-thread)
Intel CPU i7-8550U and 16 GB of memory. Our tool synthesizes the following axioms (post
pruning after all passes):

1. 0 = 0b

2. 0 = b0

3. 0∗ = 1

4. 0∗ + b∗ = (1 + b)∗

5. 00+(a+b) = (b+a)+a

6. (b∗)∗ = b∗(b+ 1)

7. b∗ + (1 + b) = b∗

8. (a+ a)a∗ = a∗a

9. (1a)(1 + b) = ab+ a

10. a+ a = a

11. (b+ b)∗ = b∗b∗

12. b + (c + a) = (c + a) +

(a+ b)

13. (ac)b = a(cb)

14. (a+ a)(b+ c) = ac+ ab

15. cb+ ab = (c+ a)b

The axioms for this class of models are expected to be similar to those of Kleene algebras
from the literature, and we compared them to Kozen’s axioms [94] (see also [95]). The
axioms synthesized by our tool are quite different from these reference axioms. As noted in
Section 5.6.2, however, Kozen used two kinds of axioms: equations and conditional equations
(axioms formulated as inequalities can be reformulated as equations). Handling soundness
for conditional equations is more complex, and we haev not tackled this in our work.

Kozen’s axioms are complete for the equational theory of regular languages under con-
catenation, union, and Kleene star (all valid equations are semantically entailed by Kozen’s
axioms). Since our axioms are valid on the same class, Kozen’s axioms imply our axioms by
completeness.

On the other direction, it turns out that if we consider only the unconditional equational
axioms in [94, Section 2, Axioms (3) - (15)], then our axioms are stronger. That is, our
axioms imply all of the unconditional equational axioms in [94], but the converse is not true.

165

We used Vampire [90] to automatically verify that our axioms (3), (4), (6), (8), and (11) are
not implied by the unconditional equational axioms in [94], and Vampire was able to produce
finite counterexample models. This result shows that our technique has the potential to
discover new and useful axioms. The equational axioms discovered in our work may already
have applications; there are several rewrite engines and solvers that use equational axioms to
reason with regular expressions where this expanded set of axioms could be useful.

Comparison with Brute-force Enumeration Similar to the experiments for modal
logics, we tried to use a brute-force enumerative Learner, instead of a constraint-solving-based
one that learns from counterexamples. The enumerative version took about 25 hours to
exhaust the axiom search space, while our tool took only 50 minutes. The enumeration
scanned through ∼10 million equations with height-2 terms and 2 free variables (corresponding
to pass 2), and ∼1.3 million equations with height-2 terms and 3 free variables (corresponding
to pass 3). Note that there are more equations in pass 2 than in pass 3 because pass 3

does not have constant terms 0 and 1 in the signature. Note also that since no finite set
of equational axioms can be complete, early termination on completeness is impossible in
this setting. We again conclude that enumerative approaches are unlikely to scale for axiom
synthesis.

166

Chapter 6: Related Work and Discussion

In this chapter we discuss prior work in several key areas relevant to this thesis. Each of
these areas have gigantic footprints in literature that exceed the scope of our purpose here,
so this chapter merely serves to set the context for the design decisions we made in our work.

6.1 HEAP VERIFICATION: LOGICS AND REASONING

We begin with an overview of logics and reasoning approaches for verifying heap manipulat-
ing programs, which has been one of the primary domains of study in our work for pursuing
the vision of eliminating expert creative help in automated reasoning.

There have been mainly two paradigms to automated verification of programs annotated
with rich contracts written in logic. The first is to restrict the specification logic so that
verification conditions fall into a decidable logic. The second allows validity of verification
conditions to fall into an undecidable or even an incomplete logic (where validity is not even
recursively enumerable), but nonetheless support effective strategies using various heuristics
and sometimes external help from the programmer for verification.

Decidable Logics There is a rich body of research on decidable logics for heap verification:
first-order logics with reachability [105], the logic Lisbq in the Havoc tool [106], several
decidable fragments of separation logic known [107, 108, 109, 110, 111, 112, 113, 114, 115] as
well as fragments that admit a decidable entailment problem [116]. The work based on EPR
(Effectively Propositional Reasoning) for specifying heap properties [117, 118, 119] provides
decidability, as does some of the work that translates separation logic specifications into
classical logic [120]. Decidable logics based on interpreting bounded treewidth data structures
on trees have also been studied, for separation logics as well as other logics [121, 122, 123].
In general, these logics are heavily restricted in order to obtain decidability.

Undecidable and Incomplete Logics There is extensive work on highly expressive heap
logics. The key problem that all of them attempt to address is the so-called frame problem:
if an operation does not modify an unbounded region of the heap, how can we effectively
conclude that properties that only “involve” that region of the heap are preserved under
the operation? This is an incredibly useful reasoning pattern for checking correctness of
heap manipulating programs, and logics that seek to facilitate effective frame reasoning
make different choices to define what it means for a property to only involve a certain heap

167

region and to logically express what it means for a program’s operation to not modify a heap
region. The most prominent among these (at the time of writing this thesis) is Separation
Logic [60, 69, 70, 124] which defines a heap semantics for formulas in the logic, wherein
sub-heaps (i.e., heaplets) are associated with formulas whose truth value only requires looking
up the relations represented in that particular heaplet. The logic also provides a separating
conjunction operator ∗ which expresses that two operand formulae that it conjoins are
associated with disjoint heaplets. Then, if a program only modifies one of the heaplets, we
can conclude that the formula corresponding to the other heaplet continues to hold.

Separation Logic can be described as having implicit heaplets, since one does not represent
memory regions as logical objects directly, rather formulae are used to refer to the properties
witnessed by various memory regions. Other logics make different choices. For example,
Dynamic Frames [125, 126] and related approaches like Region Logic [127, 128, 129] allow
users to explicitly specify heaplets in the logic in the form of variables that represent sets of
heap locations or variables that model heaplets themselves as maps (corresponding to each
pointer) between heap locations. This allows verification engineers finer grained expressive
power to talk about heaplets.

The work on Implicit Dynamic Frames [130, 131, 132, 133] defines a variant of Separation
Logic that combines the ideas of implicit heaplets in separation logic and explicitly accessible
heaplets in dynamic frames. The work on Natural Proofs [49, 50, 56] takes a similar
approach, but is a variant of First-Order Logic with Recursive Definitions (FORD). The
implicit heaplets are defined only for recursively defined functions and are given manually by
the specification/verification engineer. The heaplets themselves are recursively defined: a
recursively defined function HR corresponding to each recursively defined function R. The
work on Frame Logic [19, 20] goes further, defining an extension of FORD with a Support
operator Sp(α) to represent the heaplet of any FORD formula α. The Sp operator has a fixed
semantics, and Frame Logic therefore also has implicit heaplets. The work in [134] is very
close in spirit to Frame Logic, but only defines support for a restricted subset of formulas.
The uniquely defined heaplets in the above logics is interesting since determined heaplets
are potentially more amenable to automated reasoning [50, 56, 135]. A technical point to
note here is that the Separation Logic and its variants are typically defined over finite partial
heaps, whereas Implicit Dynamic Frames and Frame Logic are defined over total heaps. In
particular, the semantics of Frame Logic is defined over both finite and infinite heaps. The
formal semantics of Implicit Dynamic Frames is less clear, although there have been attempts
to formalize it and in fact connect it to Separation Logic [136].

The work on parametric shape analysis [137] takes an entirely different approach: it uses
a variant of FORD as the logic for expressing properties, but it does not model the heap

168

precisely, instead defining a three-valued semantics [138] for the logic and representing the
heap as a finitary structure that corresponds to (induces) a particular three-valued semantics
for formulas. This work has also been extended to handle inductively defined predicates [139].

While the above logics deal with expressing rich properties (typically data structures
and various measures over them like length, height, etc) using recursion, there are several
others that instead use a form of quantification. Our work on intrinsic definitions of
datastructures [18] covered in Chapter 4 is of this kind. Other works like Implicit Dynamic
Frames [130, 132] provide a programmatic construct whose semantics is that of an implicit
quantifier over the operand formula. Some separation logics provide an iterated separating
conjunction [60, 140, 141] and some variants of this kind of quantification have also been
explored [142, 143].

Frame reasoning as we have described it above is itself not the only way to conceive the
key mathematical burden in reasoning with unbounded heap changes, and in fact there is
work on designing logics around variants of frame reasoning [144, 145, 146].

Reasoning Specifying rich properties of heap structures typically leads to undecidability or
incompleteness for checking validity: the general entailment problem for separation logic with
inductive predicates is undecidable [147], validity of first-order logic with recursive definitions
is not even recursively enumerable (i.e., is incomplete), and the magic wand in separation
logic has the expressive power of second-order logic [148].

There are two major approaches. The first one is to use a specialized proof system for the
logic and saturate the entailment to check with respect to the proof rules. Early work on
program verification with Separation Logic annotations used symbolic execution to transform
verification problems into entailment [110] and provided a proof system to decide the fragment
of entailment problems generated by the symbolic execution. There are several other works
that use different techniques for proof search [149, 150]. A very different approach in this
realm is the idea of cyclic proofs [151, 152, 153, 154].

The second approach is much more popular, and involves translating heap logics to other
logics that have robust automation— typically First-Order Logic, via first-order theorem
provers [90], SMT solvers [11, 12], and other FOL-based intermediate verification language
frameworks like Why3 [155, 156] and Boogie [81, 157]. Tools such as Viper [158, 159, 160]
provide a general intermediate language for permission logics and handle automation using a
variety of back-ends, including SMT solvers. The core logic of Viper is essentially that of
implicit dynamic frames, and has been used to implement automation for implicit dynamic
frames by works such Chalice [133]. There is also work on translating VeriFast [161] predicates
into Implicit Dynamic Frames [162]. Other works translate proof obligations into first-order

169

logic (either by translating entailments from the base logic or generating verification conditions
in FOL) and use reasoning mechanisms for FOL [19, 20, 27, 41, 49, 50, 56, 120, 139, 157,
163, 164]. Works that use proof system/ search based automation also typically delegate
reasoning about data values to SMT solvers [165].

This section would be incomplete without mentioning the importance of SMT solvers
themselves, which are the most reliable form of automation that we have today. The software
artifacts produced in this thesis rely heavily on the automation provided by SMT solvers, and
our analysis of creativity gaps in Chapter 2 formally modeled SMT solvers as a subroutine
of the heuristic whose limitations we wanted to study. SMT solvers [11, 12, 166] provide
powerful automation for reasoning with quantifier-free fragments of decidable combinations
of theories [28, 29, 30, 167]. The construction of decidable combinations of theories is its own
line of research [168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179].

6.2 REASONING ABOUT UNBOUNDED STRUCTURES: HEURISTICS AND
CREATIVE HELP

The core technical problem in the domains of study undertaken in this thesis (Chapters 2- 4)
is the specification and verification of programs over unbounded structures: heap datastruc-
tures and algebraic datatypes (e.g., unbounded ADT lists). We also studied axiomatizations
for Kleene Algebras and Kripke Frames, which are unbounded structures. When talking
about unbounded structures, logics typically resort to either using quantification or recursion.
Both of these make the resulting logics hard to reason with. As mentioned earlier in this
section, First-Order Logic with Recursive Definitions is not recursively enumerable, i.e., no
sound proof mechanism can prove 100% of all valid theorems in the logic. Similarly, quantified
combinations of FO theories are typically undecidable (but they are recursively enumerable,
by Gödel’s Strong Completeness Theorem on entailment with respect to a recursive set of
premises). As a result, developers of tools for automating reasoning over such logics often
implement heuristics that may not always succeed. We now discuss some of the techniques
relevant to this thesis and the ways in which creative help is solicited from the user to improve
the effectiveness of heuristics. We limit our discussion to first-order logics with and without
recursion.

Reasoning with Quantification There are several ways to reason with quantified formulas,
including quantifier elimination [28, 39, 57, 180, 181], superposition [90, 182], tableaux-based
proofs [183, 184], and quantifier instantiation. However, the technique most commonly used
along with SMT solving and the most relevant to this thesis is quantifier instantiation.

170

Many proofs, especially when theorems are stated at the level where users interact with
them, can be seen as quantifier instantiation followed by some simple reasoning. In terms of
automation, one must figure out relevant instantiations of the various quantified formulas in
the query (typically given in the form of premises or axioms), and once this is done the rest
of the proof is easily automated.

Techniques for quantifier instantiation use a mix of search heuristics along with modalities
of soliciting the user for creative help to narrow the search space of likely instantiations.
E-matching, introduced by the Simplify theorem prover [185], is one of the earliest approaches
and forms the basis of most of the quantified reasoning techniques today. It has since been
implemented inside several SMT solvers and expanded to handle many theories [186, 187].
Other techniques include model-based instantiation [188], conflict-based instantiation [189,
190], and enumerative instantiation [191]. Some quantifier elimination algorithms can also
be seen as providing a set of sufficient instantiations [192], and quantifier elimination based
techniques have been studied even for undecidable theories [193]. One interesting technique
that solicits user help is based on triggers. The idea is that the user specifies a pattern
corresponding to a quantified variable, and the solver only instantiates that variable with a
ground term occurring in the set of ground clauses if it matches the pattern (this is typically
implemented as a way to guide an E-matching procedure, so ground term selection is done
modulo a current set of equalities). SMT solvers as well as tools such as Boogie [81, 194]
and Dafny [9] provide mechanisms for specifying triggers [195]. Trigger patterns can get very
complex, and there has in fact been work on modeling the language of trigger patterns itself as
a programming language [196]. However, it is well-known that trigger-based instantiation can
be unpredictable and flaky, and techniques for inferring a more stable instantiation scheme
from a user’s preliminary trigger input have been explored [197]. One recent work investigates
instantiation schemes whose output produces formulas in more expressive decidable logics
such as EPR rather than quantifier-free logics [198]. However, this work only considers pure
FOL (i.e., do not support background theories) and the approach is known to be incomplete.

One particular thread of related work that we have not covered above is the idea of ghost
code as a mechanism of soliciting user help. We used ghost code in a crucial way in Chapter 4
to reduce the complexity of the verification problems handled by automation. This is a familiar
idea in deductive program verification [77, 78, 79, 80] and is supported by verification tools
such as Boogie and Dafny. Ghost code is code that manipulates auxiliary variables to perform
a parallel computation with the original code without affecting the original code (for example,
conditionals on ghost code that update original code variables are prohibited, etc.). As
opposed to the techniques discussed above which typically deal with universal quantification,
ghost code is typically used to eliminate existential quantification. Intuitively, ghost code

171

computes witness values that are useful for verification of assertions/post-conditions. For
example, a method may start with a concrete data structure that refines an abstract datatype
witnessed by a refinement map, and the programmer can establish a new refinement map at
the exit of the method by constructing the refinement map using ghost code. In our work
we specifically use ghost code to reduce verification to decidable logics, which is relatively
uncommon. For example, the work on region logic [127, 128, 129, 157] allows users to write
ghost code to reason about explicit footprints, but generates quantified verification conditions
that are undecidable in general.

Reasoning with Recursion In our work we studied first-order logics with recursive
definitions (FORDs) where we model a designated foreground sort and many background
sorts each with their individual theories (arithmetic, sets, arrays, etc.). FORD is essentially
the classical first-order logic with least fixpoints (FO+lfp) studied in finite model theory
and database theory [59, 199, 200, 201, 202]. The only difference is that we give names to
recursive definitions that have least fixpoint semantics. We assume that the definitions are
monotonic, which guarantees that the least fixpoint exists [58] (in practice we use a slightly
more expressive fragment where we stratify recursively defined symbols and only require
monotonicity on recursive calls within the same stratum).

There is vast literature on automated reasoning with recursive definitions. In this thesis
we primarily use and study unfolding-based techniques which unfold the body of recursively
defined function symbols a few times and treat the symbols themselves as uninterpreted in the
resulting formula. These are also called “unfold-and-match” heuristics. When these heuristics
fail, the creative help solicited from users is usually information that helps an inductive
proof of the property at hand. Unfolding-based techniques were pioneered by the NQTHM
prover developed by Boyer and Moore [24] and its successor ACL2 [203, 204] had support for
recursive functions and had several induction heuristics to find inductive proofs. Different
systems vary in their determination of terms to unfold [41, 49, 50, 56, 205, 206, 207, 208, 209].
In particular we have discussed the unfolding algorithms of Liquid Haskell [25, 32] and
Leon [33, 46] extensively in Sections 2.6 and 2.7. As the completeness results we know for
unfolding techniques [17, 27] are fairly recent, we do not expect that many tool developers
are aware of the incompleteness that may stem from not unfolding enough (which is a
different from help needed for induction proofs). Note that the unfolding recommended by
complete instantiation schemes may be too large for certain problems in practice, and tool
developers may choose to implement cheap but incomplete instantiation heuristics anyway.
Still, some language frameworks like Dafny [210], Verifast [211], and Liquid Haskell allow
for unfolding (or folding) recursive definitions based on user suggestions.

172

There are several other approaches which we have not considered in detail here. One
ongoing area of research involves decidable logics for recursive data structures [212]. Naturally,
the expressive power of these logics is restricted in order to obtain a decidable validity problem.
The work on cyclic proofs [151, 152, 154] also uses certain heuristics for reasoning about
recursive definitions, and in particular recent work argues that in certain cases inductive
lemmas required for bridging the gaps in unfolding based techniques can be obviated by the
use of cyclic proofs [153]. There is also a significant amount of work in the use of Constrained
Horn Clauses (CHCs). CHCs have been used to model verification problems [213, 214],
and enable automated reasoning in practice via efficient algorithms integrated into SMT
solvers [215]. However, CHC solvers are not typically equipped to deal with verification
conditions with recursively defined function and predicate symbols, although recent work
has begun to address this issue [216, 217]. Note that while CHCs are a fragment of FOL
and therefore admit a recursively enumerable validity problem, verification problems are
typically modeled as satisfiability of CHCs (more specifically L-satisfiability: solutions must be
expressible as a formula in a given logic L), which is not recursively enumerable. Consequently,
although they are certainly incomplete, the limitations of CHC solving algorithms has not
been formally studied (to our knowledge). The possible modalities for user help is also not
clear for many of the approaches discussed above.

Although we have discussed reasoning with quantification and recursion separately, as
we showed in Chapter 2 it turns out that several heuristics for reasoning with recursive
definitions are in fact performing essentially first-order reasoning, and many of them can be
seen as a strategy for quantifier instantiation in an appropriate first-order logic. In all these
cases the heuristics employed are necessarily limited (and these limitations are also typically
encountered in practical verification problems).

6.3 IDENTIFYING LIMITATIONS OF HEURISTICS

To the best of our knowledge, prior work on modeling heuristics is somewhat limited.
The fact that heuristics often make nuanced, complex choices that are typically not well-
documented may be a contributing factor. Formally defining the settings under which they
succeed or fail appears even harder. Our work in Chapter 2 in fact encountered these
issues: the FLUID fragment of logic that we develop in Chapter 2 took us a year to identify!
Identifying the precise fragment of logic that both enjoyed the desired completeness properties
and was expressive enough to cover all known practical examples turned out to be nontrivial1.

1Anecdotes are not scientific evidence, of course, but here is another one: the author of this thesis learned
recently that the completeness of the unfolding scheme that Liquid Haskell uses was conjectured some ten

173

Still, we discuss here the smattering of related work that we believe shares the spirit of
formally characterizing various heuristics. Note that while the idea of formally identifying
limitations of heuristics is itself not new, the approach of separating them from the creative
help provided by the user and studying them in that setting appears relatively uncommon.

Natural Proofs The closest related work is the work on theoretical foundations for Natural
Proofs [27]. Natural Proofs [50, 56] is a technique used for verifying heap manipulating
programs with respect to specifications containing recursive definitions. The verification
conditions generated by the framework have both recursive definitions (used to model data
structures and measures over them) and quantification (used to express frame reasoning and
user-provided lemmas). The heuristic works based on abstracting the least fixpoint recursive
definitions into fixpoints (which can be expressed using quantification), and performing a
systematic quantifier instantiation on the resulting quantified first-order formula. Crucially,
the heuristic only handles the instantiation for the uninterpreted ‘foreground’ sort and
delegates theory reasoning to an SMT solver. The work in [27] defines a generalization
of the heuristic implemented in the earlier works [50, 56] and identifies a safe fragment of
many-sorted first-order logic that contains the verification conditions generated by the natural
proofs technique (after abstracting the least fixpoint definitions into fixpoint definitions).
The authors then show that the generalized heuristic is a complete procedure for validity
of formulas in the safe fragment, i.e., if the abstracted first-order formula is valid, then the
heuristic will definitely prove it. The only gap in reasoning is then between FOL and FO+lfp,
which is bridged by user-provided inductive lemmas. Similar to our work in Chapter 2, this
work also shows the existence of rogue nonstandard first-order models when the generalized
heuristic fails to prove a property that is valid in FO+lfp.

Another key similarity is that both works consider the completeness of thrifty instantiation
techniques that are effective in practice. This is important for two reasons. First, observe that
first-order logics over combined theories (defined, say, as a recursive set of axioms) already
admit a complete systematic quantifier instantiation procedure by Herbrand’s theorem: you
simply instantiate every quantifier with every term (also called the Herbrand universe).
However, the Herbrand universe is too large to effectively explore in general. Consider for
instance a validity problem stated over a background theory of arrays with select and store
operations [71]. Herbrand’s theorem requires that we at least explore instantiating the axioms
of the array theory with all possible finitely constructible arrays. It also does not provide any

years earlier, but the answers were not known until our results in [17]. The theoretical tools to investigate the
problem were developed over several years and the idea of looking at combined theories was only developed a
few years after the conjecture in related work, which ultimately paved the way for our results.

174

information about which instantiations are more likely to work, only that if the given formula
is valid then there is certainly a finite set of terms that is sufficient for the proof. This is
clearly impractical. The second reason is that developers of these heuristics do not want
to engage with background theories directly! They merely want to relax the quantification
directly present in the validity query (namely over the foreground sort) using instantiation
and use off-the-shelf SMT solvers to efficiently reason with background theories. There is no
middle ground here: the work in [27] in fact shows that thrifty instantiation is not complete
for multi-sorted FOL in general (see Example 4.2). It only works for certain fragments
that happen to be expressive enough to contain practical benchmarks, and theory aimed
at explaining the effectiveness of practical heuristics and identifying their limitations must
identify such expressive fragments for which the appropriate thrifty instantiation works. Our
work shares these qualities with the work in [27] and is heavily inspired by the theoretical
tools that it develops.

At its core, our work in Chapter 2 asks the same questions as the work in [27] but studies
a different logic. However, there are significant technical differences between the logics
considered in these two works as well as their results. First, the foreground sorts in our
setting are ADT sorts and not uninterpreted2. Second, the safe fragment identified in [27] is
very restrictive as it disallows uninterpreted functions to involve background sorts, which in
our setting would mean programs cannot have input parameters of the background sort, like
integers. Finally, the quantifier instantiation strategy studied in [27] is much more liberal
than in our work (and what tools like Liquid Haskell and Leon do). For example, if t is
a set of terms that occur in a theorem, the instantiation in [27] will always instantiate the
definition of f on t it, while we will do so only when f(t) occurs in the theorem. Consequently,
the proof of our main theorem is quite complex and fundamentally different from the proof
of completeness in [27]. The two results are ultimately incomparable. In particular, it is not
clear whether there is a more general completeness result that subsumes both fragments or if
it is possible in practice to translate benchmarks in one logic into the other such that the
resulting formulas fall into the complete fragment. We will revisit the issue of translating
between logics when we discuss approaches for lemma synthesis in the next section.

2We note here a common confusion about our work that stems from conflating the pure first-order theory
of ADTs with the combined theory consisting of ADTs, uninterpreted functions, and other background sorts.
The pure first-order theory of ADTs has a complete recursive axiomatization [35, 36] which yields decision
procedures that have been efficiently implemented in SMT solvers [11, 12, 37, 38, 218, 219]. The pure theory
does admit nonstandard models, but they are indistinguishable from the standard model using a FOL formula.
On the other hand, the addition of uninterpreted functions destroys decidability and gives rise to rogue
nonstandard models in the combined theory which make reasoning more complex.

175

Completeness for Practical Heuristics The work in [41] shows that Leon-like reasoning
(and UQFR in our work) is actually a decision procedure for certain restrictive logics. More
precisely, it exhibits a logic over restricted classes of user-defined abstractions of ADTs to
collections/measures in a decidable sort using catamorphisms, and shows that unfolding
function definitions just once followed by quantifier-free reasoning is a decision procedure.
The classes of such abstractions (infinitely surjective and sufficiently surjective abstractions)
however are extremely semantically restrictive compared to FLUID. In particular, as we show
in Section 2.8, validity of FLUID is undecidable, which argues this difference.

The work in [32] shows that the PLE heuristic implemented in LH is complete if an
‘equational proof’ exists, but this result is much weaker than ours, and in fact PLE fails to
prove simple theorems that UQFR can prove. For example, with a definition of the form
R(x) ≡ ite(x > 0, 1, 2) PLE cannot show ∀x.R(x) > 0 since it looks for a ‘match’ for the
case splits in the definition and would then only unfolds the body of R for the corresponding
case, whereas UQFR unfolds the definition of R regardless of match and can therefore show
the property.

There has also been work on evaluating the completeness/incompleteness of heuristics
empirically using a large suite of benchmarks [14].

Logics that Admit Complete Thrifty Instantiation Turning to logics, works on
resolution such as set-of-support resolution [220, 221] and Stickel’s theory resolution [222]
define fragments for which thrifty instantiation techniques (especially those that avoid
instantiating theory axioms) are complete. These works do not delegate background reasoning
to SMT solvers and it is unclear whether they can be lifted into a resolution-modulo-SMT
setting. The work in [223], implemented in the iProverEq prover [224] develops a complete
instantiation scheme for a fragment of pure first-order logic with equality. Unlike our work
and the work in [27] where the instantiation scheme is syntactic (based on ground terms
occurring in the unfoldings), the instantiation in [223] is guided by models arising from
satisfiability checks over certain sets of ground terms. The work in [188] identifies a fragment
of single sorted FOL over a combination of uninterpreted functions and relations constrained
by theories. This essentially uninterpreted fragment is shown to admit a thrifty complete
instantiation procedure. However, this fragment is quite restrictive and cannot support the
VCs generated by tools in practice. In general, most related works in this area do not cater
to fragments of many-sorted FOL with background theories. One exception is the MBQI
instantiation technique introduced in the same work [188], which is shown to be complete for
fragments where one can ensure (by meta-arguments outside the system) that only a finite
number of instantiations will be generated before a real model is found [174].

176

6.4 BRIDGING CREATIVITY GAPS USING LOGIC LEARNING

There are two guiding principles that we have used in this thesis to explore the automation
of creative tasks. The first is the formulation of objectives as learning problems. We seek to
distinguish the problems we explore from the area of synthesis (also typically called program
synthesis), which is much more frequently associated with the kinds of techniques we use.
Although synthesis is a broad subject, much of it focuses on the production of programs
or other symbolic expressions that conform to a specification or high-level description. In
contrast, we seek to find logical formulas that satisfy certain requirements. As such, the
problems we study have no formal specification, which is why we design frameworks that
elicit the concepts we want using different kinds of examples. Consider for example the
problem of inductive lemma synthesis that we study in Chapter 3 (Section 3.2.3). Written in
plain English, the problem is: “Find a sequence of formulas such that each of them is provable
(perhaps using the previous ones) by an automatic induction prover X and the formulas
together prove the theorem at hand using some automatic theorem prover Y”. Note that the
manner of the induction proofs for each of the lemmas, the internals of the automatic provers,
and the number of lemmas needed or their dependence on each other are all unspecified
or unknown! This is in fact the problem that users are solving when they interact with an
automatic prover like Dafny or Liquid Haskell. They must come up with an unknown
number of lemmas and prove all that must be proven using only the language interface they
are given. In our work we simplify this large pain point into a specific mathematical problem
by studying a particular logic and develop a tool to automate lemma synthesis for a particular
domain.

We note here that at the time of writing this thesis, the word learning overwhelmingly
points in the direction of machine learning/artificial intelligence research based on neural
networks. Although we do not use neural networks, there are many similarities. The key
similarity is the need for generalization. Both problems are typically under-specified, and one
must equip learners with inductive biases in order to find solutions. In our work we borrow
the idea of using grammars as one kind of inductive bias from the field of program synthesis,
and introduce a new manner of inductive bias through the different varieties of first-order
(counter)example models. The key difference between contemporary ML/AI research and
our learning problems is our second guiding principle, which is that we require the output of
learning to be a logical formula. This is certainly not a canonical formulation, and one can
certainly explore the generation of other kinds of objects that ease the burden of providing
creative help, like (counter)example structures or even natural language utterances. However,
creative insight encoded as a symbolic expression is an aesthetically pleasing formulation for

177

mechanization and is also a common modality for soliciting user help in automated reasoning.
For example, one can directly use a learned/provided lemma in an automatic theorem prover.

In this final section of the chapter, we give a brief overview of literature related to these
guiding principles in the context of our work.

Program Synthesis and Formula Synthesis The field of program synthesis is very
relevant to our work, especially the Programming By Example (PBE) paradigm [225, 226].
Many different techniques [55, 64, 227, 228] proposed in the inductive synthesis3 literature
have proven useful for other kinds of synthesis/learning problems. Common formats and
frameworks for synthesis like SyGuS [64, 91] and SemGuS [230, 231] have spurred advances in
algorithmic techniques for synthesis and produced off-the-shelf tools from which our research
benefits greatly.

The synthesis of logical formulas is a related problem that has been explored in prior
literature, often in the context of loop invariant synthesis [232, 233, 234, 235, 236] (including
approaches involving learning from examples [51, 237, 238]) or the synthesis of relational
queries for databases [239, 240, 241]. However, the problem of learning quantified formulas
from rich first-order example models has only seen theoretical and practical progress more
recently. The works in [242, 243] investigate theoretical questions and propose algorithms
for broad fragments of quantified FOL based on techniques such as constraint solving and
tree automata emptiness [242, 243]. However, the algorithms do not appear to be effective in
practice. The work in [243] tackles the problem of synthesizing formulas with unboundedly
many quantifiers but over finitely many variables (possibly reusing variables) and proves
decidability results using tree automata. However, they do not present any practically
effective algorithms, and naive implementations of tree automata techniques suffer from
state-space explosion. There has been some recent work in program synthesis that has shown
promise for efficient algorithms based on refinements of tree automata [244, 245], but it is
unclear whether these techniques transfer to synthesis of formulas. The work in [242] develops
a synthesis technique based on SAT solving and uses it to synthesize global invariants for
distributed protocols, but the complexity of the generated queries causes SAT solvers to
struggle in practice. In contrast, works based on clever enumeration techniques perform
better on the same benchmarks [246, 247].

The model-guided learning frameworks we develop are in spriti agnostic to the specific
algorithmic techniques used for formula synthesis. However, we require a fairly expressive
interface, and in general none of the aforementioned works appear to meet our requirements.
First, we use grammars to specify our hypothesis space. Second, we utilize a variety of

3as opposed to deductive synthesis, a la [229]

178

example classes beyond the usual positive and negative examples. The contribution of each
kind of example towards the learning objective is given to the learner in the form of a
constraint over the structure of the formula to be synthesized. Finally, our models and
constraints involve a combination of theories such as integers and sets. We except that
advances in tools and techniques for formula synthesis will improve the efficacy of our overall
approach.

Emerging work in neuro-symbolic learning defines continuous/differentiable relaxations
of semantics for logics and uses optimization algorithms such as gradient descent to learn
formulas from examples [248, 249]. While these approaches have the potential to provide
stronger forms of inductive bias than previously developed for formula synthesis, the area is
somewhat nascent and preliminary approaches seem to be brittle.

Synthesis and Learning for Automating Creative Tasks The general idea of using
synthesis or even learning to automate burdensome manual tasks is certainly not new. Apart
from the synthesis of inductive lemmas and loop invariants which we have mentioned earlier,
there are several other forms of creative help that are being pursued for automation with great
interest in contemporary work. Examples include quantifier instantiation [250, 251, 252],
contracts/class interfaces [253, 254, 255, 256, 257], and termination arguments [258, 259, 260].
The synthesis of global state invariants for distributed protocols expressed in logic [242, 246,
247] is one with a lot of potential impact for building verified systems. The invariants are
complex and use nested quantification, which makes it a hard problem for synthesis. However,
the role of the expert in encoding the protocol in logic is unclear, and in particular it seems
hard to determine whether invariants can even exist in the available vocabulary for a chosen
logical abstraction. While this may preclude non-experts from using such a workflow, we
suspect that the invariants may also be hard for experts to formulate, and synthesis can
certainly aid in that setting. A potential complement to such a process may lie in works on
unrealizability [261, 262].

Turning to frameworks, early work by Angluin developed the query-based active learning
model [263]. In program synthesis and related problems, the oracles to be queried are often
verification engines, test generators, or model checkers. The interesting aspect is instead
the design of the learner itself and the kinds of queries it issues to these different oracles.
In this realm, the CounterExample-Guided Inductive Synthesis (CEGIS) framework [55] in
the program synthesis literature formulates an example-based learner which utilizes queries
(usually candidate solutions) to obtain counterexamples from a verification oracle. CEGIS
addresses synthesis problems that are stated in the ∃∀ . . . form (loosely read as follows:
“exists a finitary encoding of the solution such that for all inputs/free variables the solution

179

meets the specification”) by relaxing the universal quantification to satisfaction over a finite
number of examples. Our model-guided synthesis framework is can be seen as a variant of
this architecture. The key difference is that the problems we investigate (as we discussed
at the beginning of this section) don’t seem to have clear formal specifications at all. The
oracle-guided inductive synthesis framework (OGIS) [264, 265] is a closer fit and does not
require the problem to have a formal specification, but the framework does not typically allow
for open-ended learning algorithms where the framework may run forever. Still, both CEGIS
and OGIS are based on the principle that examples can encode information about the “manner”
in which previous candidate solutions failed which can help rule out other structurally similar
bad candidates. While this is now a well-understood perspective on program synthesis, the
same cannot be said for hypothesis classes of formulas. In particular, structural similarity
seems hard to gauge in formula space. Counterexample-guided abstraction refinement
(CEGAR) [266, 267] is another form of counterexample-guided learning. Unlike CEGIS,
CEGAR techniques produce an abstract model, upon which counterexamples are analyzed
and the abstract model is accordingly refined.

The work in [268] develops an abstract learning framework for synthesis that subsumes
many learning frameworks. It also investigate specific mathematical structure in the abstract
frameworks to formulate properties such as progress or convergence for the learner. We
believe that the model-guided synthesis framework can be seen as an instance of such abstract
reasoning frameworks.

We now discuss literature related to the two problems we tackle in our work, namely inductive
lemma synthesis and axiom synthesis.

Synthesis and Automation for Inductive Reasoning A first problem for inductive
reasoning is to prove a given theorem by induction. Typical automation approaches for this
this problem involve fixing one or more induction templates (say structural induction over
the structure of an algebraic datatype, or the PFP formula we use in Chapter 3) and using
search heuristics to fill the holes in the template. This is a fairly effective technique for
several problems and has been explored in prior work [209, 269, 270, 271, 272, 273] including
for various specialized fragments [274]. However, it may not be possible to prove a theorem
by induction directly. A more general version of the problem involves finding one or more
lemmas that are provable by induction (using some templates as before) such that the lemmas
help prove the theorem at hand without inductive reasoning. In Section 3.2.3 of Chapter 3 we
further distinguished between theorems that require a sequence of lemmas versus those that
can be proven using lemmas that are independently provable by induction. Early systems

180

solicited these lemmas from users; we have discussed these in previous sections. The use of
synthesis and learning techniques to find inductive lemmas is of course relatively recent.

In our work we look at inductive lemma synthesis in the context of verifying imperative
programs. The work in [275] also studies verification of imperative programs and uses proof-
theoretic techniques to discover subgoals during proofs that serve as inductive hypotheses to
help the proof. This relies on chancing upon inductive lemmas during proof, and the paper
does not provide any relative completeness results. In contrast, our technique is syntax-guided
for arbitrary lemmas and is relatively complete. Other lemma synthesis approaches include
that of the work in [276] which also uses SyGuS for lemma generation and operates over the
domain of bitvector problems. SLS (Songbird+Lemma Synthesis) [152] is a tool for lemma
synthesis over Separation Logic. SLS identifies candidate lemma templates by looking at
the heap structure of a given entailment. It then conducts structural induction proofs to
generate constraints on top of a lemma template, then solves the constraints to refine the
template and discover inductive lemmas.

Lemma synthesis to aid verification of functional programs over Algebraic Datatypes has
been better explored [24, 203, 209, 217, 273, 277, 278, 279, 280]. The work in [66] uses
syntax-guided-synthesis similar to our approach but does not use counterexamples. The work
in [217] formulates verification problems as CHCs and develops a CHC solving algorithm
over algebraic datatypes and uninterpreted predicates to infer inductive facts similar to
lemmas. Recent work studies lemma synthesis in an interactive theorem proving setting [281].
This is interesting since it is not always possible to find a lemma that can complete a proof.
Importantly, the authors integrate their technique into Coq [10] as a tactic that users can
readily employ. The work in [282] discovers lemmas for inductive equational proofs over
algebraic datatypes using a method that it dubs lemma discovery as opposed to synthesis
owing to the connection its approaches have with the problem of theory exploration (see
below on works related to axiom discovery).

To the best of our knowledge, ours is the only work on inductive lemma synthesis for
theorems arising from imperative program verification and written in FO+lfp. Although our
technical setting is quite broad, we find that adapting synthesis techniques between logics is
hard. At one level, translating between techniques for imperative and functional programs
is challenging since the datastructures as well as the underlying theories are very different.
For example, it is hard to think about the equivalent of a doubly linked list or a circular
list using ADTs, and conversely it is hard to define algebraic trees in a heap setting. Even
between different logics for verifying imperative programs, it turns out that translation can
incur unnecessary bloat that can make lemma synthesis harder— or even easier, to the point
of eliminating the need for a lemma at all! We refer the reader to Section 3.6.7 for a more

181

detailed comparison between our approach and state-of-the-art approaches developed for
other logics.

We now turn our discussion to a very closely related problem and arguably the most
popular problem in the realm of synthesis for inductive reasoning, namely loop invariant
synthesis [51, 232, 233, 234, 235, 236, 237, 238]. Our work in Chapter 3 in fact appears
to share many curious similarities with the work on ICE Learning [51] for loop invariant
synthesis. There is some mathematical unity between the two problems in that inductive
invariants are similar to inductive lemmas when programs are written as formulae in FO+lfp.
The positive, negative, and implication counterexamples used in the ICE framework also
possess an aesthetic resemblance to our Type−2 , Type−1 , and Type−3 counterexamples
respectively. However, to the best of our knowledge, this similarity falls apart on closer
inspection. First, programs, especially stateful programs that modify heaps are hard to
translate into pure logic. Note that one would have to capture the potentially unbounded
modification to the pointers performed by a loop in the program in terms of a recursive
definition.

The similarity between the counterexamples does not hold up either. Our Type−1 coun-
terexamples are not actually negative examples. They are witness non-provability, not
invalidity. Interestingly, a different work on loop invariant synthesis [283] does indeed utilize
such examples and also recognizes them as capturing non-provability information. The
Type−3 model = implication counterexample match does not hold up either. In the loop
invariant setting programs evolve states, leading to counterexamples of the form (S1, S2)

where S1 and S2 are program states and the example enforces that if S1 is contained in the
synthesized invariant then S2 must be contained as well (hence the name implication coun-
terexample). In contrast, in the pure FO+lfp theorem proving setting, there are no changes
to models that call for having two separate models as in an implication counterexample.
Instead, Type−3 models are a single positive counterexample over which the PFP of a lemma
must hold. The PFP formula is itself an implication where the lemma to be synthesized
“appears” on both sides, giving the appearance of a counterexample capturing an implication.
We leave the determination of the precise mathematical connections between the two worlds,
if any, to future work.

Lastly, on the empirical front, we find in preliminary investigations that FOSSIL cannot
handle invariant synthesis problems even when we can state them in FO+lfp. This is because
we do not synthesize lemmas that quantify over background sorts such as integers. Our
synthesis algorithm that uses essentially Boolean constraint solving exploits the fact that
expressions synthesized do not have constants over the background sort. We manually identify

182

precise fragments of logic for expressing lemmas that enable the effective automation of
induction proofs and are expressive enough to capture practical proofs. We then use the
knowledge of the existence of this fragment to make our synthesis problem easier. The
structure of loop invariants is quite different, and the structure of their hypothesis space is
different as well.

Discovering Axioms and Inferring Laws from Data The axiomatization of logics
and classes of structures has a rich history in the mathematical literature. But the term
axiomatization is used to describe many different kinds of problems. To our knowledge,
ours is the first work to study automated axiomatization of classes of structures from a
model-theoretic perspective.

One class of problems rooted in the work of Leśniewski, Tarski, and Łukasiewicz [284, 285,
286] is to find simple axioms for algebraic structures (e.g., groups) for which axiomatizations
are already known. The objective is to find axiomatizations that are shorter (as short as a
single axiom) or that use a different set of operators (e.g., a division operator for groups).
Work by William McCune and contemporaries [287, 288, 289, 290, 291, 292, 293, 294, 295]
studies using computers to find simple axiomatizations for various algebraic structures.

The problem of automated theory discovery or theory exploration has also been studied [271,
282, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305]. In theory exploration, one has a set of
axioms A that defines a theory of interest, and the goal is to find formulae φ that belong to
the theory of A, i.e., A |= φ, with a preference for finding interesting or complex theorems,
e.g., discovering Sylow theorems given group axioms. The model-theoretic axiomatization
problem can be thought of as a dual problem to theory exploration since it requires finding
axioms given the theory, i.e., to find A such that A |= φ for every φ in the theory of some
class of structures C.

Both axiom discovery and theory exploration are grounded in well defined mathematical
realities: groups, modal frames, equations entailed by a theory, etc. A more general problem
involves the discovery of laws or patterns that ‘explain’ observed data. This problem, also
known sometimes as symbolic regression, overlaps much more heavily with contemporary
artificial intelligence research, but the field is quite under-explored [306, 307, 308, 309]. This
is an exciting avenue to extend the ideas developed in this thesis.

183

Chapter 7: Conclusion and Future Work

In this thesis we asked a rather presumptuous question: are we stuck in the field of
automated verification? In what ways are we stuck, and how do we move forward? We then
identified a very prevalent pain in using automated verification, namely the inexplicable need
for expert creative help, and attempted to give this problem some structure. This led us to
the idea of formally characterizing the role of creative help, and well as the idea of learning
logical expressions from rich example structures as a potential means to bridge the creativity
gaps in automation. We also explored how the design of the verification paradigm can in
itself allow us draw boundaries differently between the role of automation and the role of
user help, and thought about what an appropriate balance between the roles of these two
parties might be.

Our quest is far from over, and there are a number of compelling questions to pursue for
the future. We record a few thoughts on these below.

7.1 BETTER FRAMEWORKS FOR AUTOMATED VERIFICATION

Foundational Questions There are several foundational questions that remain open
across the different reasoning frameworks and logics that we have encountered in this work.
We first start from where we left our study in Chapter 2.

Complete Reasoning. We discussed the completeness result in the work on foundations of
natural proofs [27] (henceforth called FNP) in Chapter 6, and noted that the our completeness
result was essentially incomparable with theirs. To recall for the reader, the key differences are:
(a) our result works over an interpreted foreground sort supporting a theory of ADTs, whereas
the FNP result works over an uninterpreted foreground sort (used to model heaps), and (b)
our result supports recursively defined functions that have arguments from background sorts,
which falls outside the “safe” fragment defined in FNP, and (c) we do not know of complete
thrifty instantiation schemes that can handle quantified statements other that definitions
(lemmas, for example), whereas the FNP result does define a complete thrifty instantiation
strategy for non-definitional quantified formulas (which is, of course, more liberal than
simple unrolling of recursive definitions). The gap between unrolling-based reasoning and the
intended semantics is really the gap between FO and FO+lfp in the FNP work, whereas in
our result the gap is between FO over combined theories versus FO on the standard model.
One open problem is to find a more general result that extends both results. More generally,
what are the key principles that underlie the design of logics that admit complete thrifty

184

instantiation schemes? The design of programming languages and specification languages
whose verification queries are guaranteed to fall into logics with complete thrifty reasoning
strategies can lead to better practical automation.

There are also a number of extensions or variants of our completeness result that would be
interesting to pursue:

1. Finding a complete thrifty instantiation scheme that can handle (user-written) univer-
sally quantified lemmas. This does not exist as far as we know; current tools like Liquid

Haskell ask for users to provide the lemmas as well as the relevant instantiations for
the proof. The user instantiation removes the quantification, which reduces the new
query after writing a lemma once again into our fragment defined in Chapter 2, but
this is not satisfactory.

2. Other interesting extensions include handling definitions that do not terminate on
some inputs (i.e., partial functions), handling polymorphism, and handling higher-order
functions (HOFs). The last of these is the most exciting. LH and Stainless in
fact support defining HOFs but our result does not apply to such definitions. These
tools reason with HOFs using defunctionalization [310], i.e., converting them to FOL
definitions by modeling function symbols as constants in a new sort and introducing an
uninterpreted function apply , where apply(f, args) models the application of a (possibly)
higher-order function f to arguments args . However, simply defunctionalizing higher-
order definitions and applying our existing result would only yield a completeness
theorem for the first-order fragment containing defunctionalized formulas. This is
not enough, since the desired completeness theorem in this setting is a result for the
appropriate higher-order logic. This effort is further complicated by the fact that
Second-order logic is already incomplete (and can be as powerful as mathematical
reasoning itself). Therefore, reasoning in the users’ intended (a.k.a standard) model
is incomplete. But this is also true of our existing result! Instead, our completeness
pertains to the logic of combined theories which we show is the logic that the heuristics
implicitly reason with. We believe that there does exist a completeness result for
analogously defined higher-order logic whose reasoning matches with the heuristics
but whose class of models would be larger than the standard model. Defining such a
logic that supports higher-order functions with recursive definitions and yet admits
completeness of a thrifty instantiation scheme seems challenging.

3. We believe that the theoretical tools discovered in our work can be used to invent new
complete algorithms similar to UQFR for other logics. One example is logics that

185

support datatypes other than ADTs, e.g., abstract data types such as sets, maps, and
queues.

4. Another possible transfer of our result involves relaxing the setting in the FNP work to
have users supply instantiations for lemmas. It would then be useful to ask whether we
can define a complete thrifty instantiation scheme that can support a practicable set of
recursively defined functions with arguments from background sorts. Recall that the
FNP setting deals with heaps where datastructures can be infinite (e.g., infinite linked
lists), as opposed to ADTs where values are finite. Recursive definitions are hence given
semantics using least fixpoints. Notions of ‘termination’ and ‘provable acyclicity’ are
not easy to define in this setting.

Thrifty Instantiation. A separate direction involves investigating mechanisms to design
thrifty instantiation schemes. The scheme that we study is a simple syntactic one: if you find a
ground term R(t), unroll the body of R on the arguments t. However, one can look at schemes
that are even thriftier. For example, when the PLE heuristic used by Liquid Haskell

encounters a case split it requires that one of the case guards be proven to match (using a
separate query to an SMT solver), and then only unrolls the body for the corresponding case
rather than the whole definition. We illustrate an example in Chapter 6 which shows that
PLE is not complete (i.e., can design an example where it fails but UQFR would not), but
the broad principle of only unrolling a definition when it is useful to prove something is quite
sensible. This is in fact similar in spirit to resolution, and we believe the use of resolution-like
techniques to guide instantiation can result in extremely efficient algorithms.

An extremely relevant twist on the above problem is to develop theoretical tools to study
instantiation heuristics obtained using machine learning algorithms. Such techniques are
already being used to improve the efficiency of solvers in practical settings [250]. Although
they may be extremely thrifty, they are unlikely to be complete in general. It would be
interesting to explore fragments of logic with interesting statistical properties (e.g., “generated
from an underlying distribution”, whatever that may mean) where learning-based instantiation
schemes are guaranteed to be optimal.

New Logics. We turn to discussing open foundational questions on other logics and frame-
works encountered in this thesis. The most fertile ground here is of course the investigation
of the Intrinsic Datastructures (IDS) paradigm developed in Chapter 4. Our evaluation of
the expressive power of the logic was only empirical: we simply considered common heap
datastructures and were able to encode all of them. There were many surprising gadgets
that we discovered, such as the use of a monadic map with rational values to define trees

186

(see Section 4.1). Note that over finite heaps one can certainly express typical recursive
definitions using IDS since we can always invent a monadic map to simulate a ranking
function corresponding to the least fixpoint computation and demand that recursive calls
decrease the ranks. However, we believe that IDS is a strictly more powerful logic, and it
would be interesting to precisely characterize its expressive power.

Expanding the IDS/FWYB framework to relate to other paradigms is another useful
direction. In particular, it would be interesting to see how intrinsic definitions with fix-
what-you-break proof methodology can coexist and exchange information with traditional
recursive definitions with induction-based proof methodology. For instance, programs with
some classes/data structures being supported using intrinsic definitions while others are
supported using recursive definitions (e.g., common datastructures which may be packaged
as a verified library) will allow more flexibility for using IDS in practice. Another effort of
this kind would be to adapt IDS for functional programs. Since functional data structures
are not mutable, ghost fields will always meet local conditions. However, we may need
to (re-)establish rather than repair local conditions, which may require ghost code, e.g.,
establishing that the ghost map sorted on a functional list x is true. Recent work in [311] for
verifying functional programs shares some components of this vision.

We can also apply the idea of identifying limitations of paradigms to ghost code which
we encountered in Chapter 4. Although writing ghost code is a well-established technique
to bridge gaps, we do not know of any work on the limitations of the framework itself. For
example, in our work we used ghost loops and ghost methods to construct monadic maps (see
Section 4.7.2). However, these are hard to figure out for a user without a lot of expertise. It
would therefore be interesting to look at, say, the power and limitation of ghost code when
only straight-line ghost code is allowed (note that the original method can have loops, and
one can write straight-line ghost code inside a loop body).

Building Tools with Better Automation Support One of the big questions we have not
addressed in this work is how our various insights come together to inform the development
of verification tools. We speculate some potential directions on this subject here.

Inductive Reasoning and Lemma Synthesis. One clear recommendation of this thesis is to
make tools for inductive reasoning (and specifically inductive lemma synthesis) more readily
available for integration into verification workflows. We boldly claim that the field is ready
to begin an era of making available off-the-shelf solvers that can handle typical inductive
reasoning queries in practice analogous to the role of SAT/SMT solvers today for decidable
reasoning over quantifier-free combinations of theories. Tools like the Imandra prover [209]

187

already echo this sentiment.
There are several frontiers where contributions would push this agenda forward. The first

is the integration of lemma synthesis into a user-facing verification engine used widely, such
as Dafny [9]. This would allow us to focus on a particular language and investigate specific
principles, heuristics, or tricks that can make lemma synthesis practical in the language. For
example, the work in [312] describes a taxonomy of typical inductive lemmas that seem to be
required for the specifications that they deal with. Consider also the unique advantage of
working with a user-facing verifier: we can analyze the typical verification queries that the
tool fails on due to failure of inductive reasoning and refine our techniques accordingly. For
example, the automatic generation of grammars from a verification query is a crucial part of
using grammar-based synthesis techniques. Although we use a fixed scheme in our work we
find that it can make a substantial difference in the learner’s ability to converge onto a useful
set of lemmas. Since there are no clear principles for generating grammars automatically,
understanding the typical use-cases for a particular tool may provide a way forward. We may
also be able to solicit user feedback from a language interface, which can allow other kinds of
learning techniques to also compete for providing effective lemma synthesis to a user.

Our work also represents significant progress in the verification of formulas in first-order
logic with recursive definitions (FORD). Therefore, a second interesting direction to pursue
would be to define a class of logics around FORD (similar to SAT/SMT) and develop off-
the-shelf solvers for these logics. Such a standard will facilitate the use of solvers for this
problem and yield a platform where solvers can compete and innovate to find induction
proofs automatically.

There are also directions for impact that require less radical movements: for example,
we show in Chapter 2 that the reason queries fail without lemmas is that there are rogue
nonstandard models. Note that these are legitimate models that demonstrate invalidity in
the underlying FO logic. However, we only use the possibly weaker non-provability examples
(Type−1 and Type−3) to guide the synthesis in Chapter 3. Integrating rogue nonstandard
models into the set of counterexamples has the potential to make synthesis more efficient.
However, extracting these models is hard; even expressing them is hard as they are typically
infinite— see recent work in [313, 314] on handling infinite counterexamples.

Tools with Predictable Automation. In Chapter 4 we developed the FWYB methodology
and the well-behaved language paradigm as an answer to the need for predictable verification.
However, as we briefly pointed out during our case studies (Section 4.7.3), our first attempt
at this language paradigm does not cover all the gadgets one might need while verifying
even common heap datastructures. Another simple example is the idea of multiple broken

188

sets tracking the breakage of a mutually disjoint set of local conditions, which we use in
our evaluation but do not provide a helpful language feature to leverage for users of our
framework. Revisiting the well-behaved programming paradigm with a larger set of case
studies and creating a more comprehensive language paradigm would be invaluable.

A related effort here would be to develop verification engines for higher-level languages (like
Verifast for Java [161], Verus for Rust [315], and Dafny [9]) that that provide native support
for intrinsic definitions and produce verification conditions in decidable theories that SMT
solvers can handle efficiently (see RQ3 in Section 3.6 on the importance of generating decidable
queries). In fact, we can also marry into this the idea of learning for bridging creativity
gaps: as we mention in Section 3.6, many updates of monadic maps are straightforward using
definitions, and tools that automate this can reduce annotation burden significantly. The
use of program synthesis techniques may be able to drive down the annotation burden even
further1. Integrating definitional updates of monadic maps into a high-level language with
native support for IDS and exploring lightweight program synthesis techniques would make
IDS an extremely attractive framework for developing verified software.

Finally, we can also look into building tools that implement complete procedures like the
one we develop in Chapter 2 (which may run forever) to provide a different kind of reliable
automation: one where the failure of the tool after spending a certain amount of time is
not a guarantee that the problem is fundamentally unsolvable by the tool, but is typically
the case in practice. More generally, completeness ensures that there are no embarrassing
misses of proofs; see the tutorial cited as [316] for a more detailed presentation on the case
for completeness as a theoretical standard for verification algorithms and tools.

Further Practical Domains In this work we have focused on the verification of heap-
manipulating programs and the verification of functional programs over ADTs as our domains
of study. However, these are admittedly well-trod paths in the literature and there are many
complex programs and specifications that we can look at with the creative help () + reliable
automation (2) lens that we have espoused in this thesis.

Even within the broad realm of datastructures, we are intrigued with the ease with which
intrinsic data structures capture complex data structures such as overlaid data structures in
a simple, compositional manner (Section 4.7.5). Exploring intrinsic definitions for verifying
concurrent and distributed programs that maintain data structures would be interesting.

1Note that this does not alleviate the burden of having to come up with the right monadic maps in the
first place, but that may present its own opportunity for a learning problem: given a datastructure with a
partial IDS definition (or even a recursive definition), identify a set of monadic maps and local conditions that
that can prove a given program correct. These additional maps must not, of course, change the definition of
the datastructure itself.

189

Beyond datastructures, intrinsic definitions open up an entirely new approach to defining
properties of unbounded structures in a way that can simplify reasoning. Exploiting intrinsic
definitions in other verification contexts like unbounded mathematical structures used in
specifications (e.g., message queues in distributed programs), parameterized concurrent
programs (where configurations are modeled as unbounded sequences of states), and programs
that manipulate big data concurrently (like Apache Spark) are exciting future directions.

Another realm of verification problems beyond datastructures is the refinement of dis-
tributed protocols. Protocol designers and the engineers who implement them use several
creative insights to argue the correctness of optimizations, changes, or refinements they make
make to a base protocol. This problem is currently beyond the abilities of modern automated
verification frameworks.

Finally, we briefly mention here the emerging area of using large language models (LLMs)
trained using truly staggering amounts of data to write proofs [317, 318] (including proofs of
programs [319, 320]). We can once again apply our lens in this realm and investigate the
typical gaps in reasoning exhibited by LLMs2 and use techniques similar to the ones developed
in this work to bridge the gaps. A taxonomy of reasoning gaps for LLMs would be a seminal
contribution in this space. Current literature seems to suggest that the synthesis of inductive
lemmas is already such a gap [321], which provides a direct connection to the contributions
of this thesis. A slightly less speculative direction is the use of LLMs as powerful search
heuristics to guide synthesis algorithms, e.g., if an LLM can suggest "proof by induction on
n" as the best hypothesis from a space of candidate hypotheses, an automated reasoning
engine can then frame the appropriate formal induction step and check if it is valid.

Design Considerations for Verification Languages and Frameworks Our work on
Predictable Verification looks at redesigning the verification experience of a user around the
provision of creative help in a painless manner. This work can be seen as a point in an entire
spectrum of verification frameworks. On one end of this spectrum lie frameworks that employ
simple, lightweight types. The specifications are essentially fixed (one designs a type system
to check a predetermined property or set of properties), but the user burden is relatively
low (determine the types of variables/functions), and the level of automation is high (type
checking is decidable). On the other end of the spectrum lie bare-bones interactive theorem
proving frameworks. The specification language is very flexible and can express complex
properties, but the user burden is high (user has to essentially write the entire proof), and
automation is low (one only has a proof checker). Our IDS/FWYB framework strikes a

2This may be a moving goalpost of sorts given that one may be able to constantly update the abilities of
intelligent agents as more data becomes available, but we speak here of capabilities in a broad sense.

190

different balance compared to these extremes, allowing for a moderate level of flexibility
in specifications (namely, it has to be expressible as an intrinsic definition) that appears
to be sufficient to express several datastructures, and the user burden is moderate as well
(ghost code to update monadic maps), but the automation is a decision procedure and is
very predictable (similar to lightweight types). There can of course be many other points
on this spectrum: for example, the work in [22] identifies a class of programs that can be
verified without providing any loop invariants. As one might expect, the expressiveness of
the class is reduced in order to obtain such a result.

The idea of designing frameworks around the provision of independently described user
inputs is itself not new. For example, the Rust programming language [322, 323] which uses
the idea of resource ownership to ensure that users cannot write (while sticking to the safe
fragment of the language) code with memory safety violations or data races. In theory, a user
can carefully look at their code and assess whether it meets the independently described rules
of the Rust borrow checker (this is not easy in practice, however, and users often report a
significant learning curve). Rust thus offers a predictable verification framework for memory
safety and data race avoidance. The Verus framework [315] augments the rust language
with an expressive specification language and a verifier for checking functional correctness
specifications. However, the handling of the higher-level specification features falls back
into the unpredictable heuristics category. The contributions of the IDS framework are in
a sense complementary to this setup. We leave the handling of memory safety, checking
modifies clauses, and ensuring preconditions to an underlying language and focus instead
on a higher-level specification language that offers predictable verification via ghost code
described using requirements which are specified independently from the underlying verifier
for the high-level specifications. In general, programmers may wish to check the correctness
of their code against multiple specifications, and building language frameworks that offer
flexibility of composing different analyses and separation between unrelated analyses would
be a valuable pursuit.

There are several exciting directions to pursue starting from our work. One grand vision
is to lift the language of the required creative input required to better matches a user’s
intuitive arguments for correctness. This idea of bridging intuition with formal proofs
will of course require the study of reasoning patterns employed by users of various kinds
(novices/amateurs/experts), and the exploration of new modalities for the provision of creative
insight. Recent work of this kind [324] formalizes the idea of a proof of correctness that
takes the form of arguments for a handful of distinct “scenarios”. A user can formally provide
these scenarios and the high level proof arguments associated with them. This is then shown
to be sufficient to automatically verify a certain useful class of concurrent programs. This

191

vision also opens up the possibility of new algorithms to translate between high level creative
insights and formal proofs. The work in [197] refines user provided triggers for quantifier
instantiation into more stable ones, and can be seen through this lens of leveraging insights
to ensure reliable automation of any kind. As mentioned above, the use of even restricted
forms of natural language as a modality for providing insight is another interesting dimension
in this space.

A dual problem to the above vision involves the failure of proofs. In this thesis we have
largely focused on algorithms for proving correctness and their limitations. However, users
often write formal proofs that are incorrect at first (even if their high level intuition is correct)
and gradually refine their arguments. It is therefore critical for verification frameworks to
support workflows for repairing proofs/creative insights as well. For example, the work
in [325] develops a language of proof actions that modify a user written proof to resolve
common failure modes in an interactive theorem proving setting.

In our work in Chapter 2, we show that rogue nonstandard models must exist when
inductive lemmas are needed (since our procedure is FO-complete). This provides a potential
direction to guide users (as well as automatic tools) towards required lemmas. Recall that in
Section 2.6.4 we showed an intuitive rogue nonstandard model that can be eliminated by a
useful lemma. Generalizing this example into a mechanism of feedback requires overcoming
a couple of challenges. We must first determine whether it is possible for users to ingest
feedback comprising of such models into a realization of why their current proof fails, and
further use that realization to come up with a useful lemma. If it is indeed true that rogue
nonstandard models can provide effective feedback, we can try to synthesize models with
finitary descriptions similar to the ones showcased in Section 2.6 using program synthesis,
template-based synthesis using DSLs, or even finite model finders [313, 314]. An alternative
pathway towards this objective involves the use of non-provability examples developed in
Chapter 3 which also contain the essence of proof failure. In particular, non-provability
examples give valuations to inductive definitions that do not conform to least fixpoint
semantics. A user could point to the discrepancies in this model that may be relevant to the
proof, and in doing so provide the creative input necessary to synthesize a useful lemma.

We can also similarly investigate feedback mechanisms for the FWYB framework. For
example, an interactive system that shows broken elements and perhaps suggests fixes to
programmers as they annotate the code may reduce cognitive burden.

192

7.2 BEYOND VERIFICATION

Algorithms for Logic Learning This thesis has clearly argued that logic learning is
a fundamental computational problem that can be used to automate many creative tasks.
However, as we discussed in Chapter 6, state-of-the art algorithms for logic learning suffer
from many challenges. Fundamental innovations in logic learning algorithms can impel a
multitude of applications.

A major challenge is the outsized impact of the quality of counterexample models generated
by various reasoning oracles. In our work in Chapters 3 and 5, we sometimes found that such
models did not rule out enough bad hypotheses. This problem can also be alternatively stated
by saying that counterexamples must be used with stronger inductive biases/generalization
metrics. However, this assumes that it is possible to use a few well-designed counterexamples
with an appropriate inductive bias to arrive at the desired hypothesis from a hypothesis space
(given, say, as a grammar). We discussed in Chapter 6 that the insight from the CEGIS
program synthesis framework of counterexamples to a bad candidate ruling out other bad
candidates was not well-established for synthesis in quantified logics. In general, few-shot
symbolic learning is not well-explored for learning from FO models even in settings with a
static set of example models, let alone feedback-based settings like ours or active learning
settings. It would be useful to study this problem in its own right.

A different approach to the above challenge would be to use a large number weak coun-
terexamples to provide sufficient generalization. However, almost all symbolic synthesis
algorithms we know of cannot handle a large number of counterexamples (unless it turns
out that a small subset of them might be sufficient). Innovating new algorithms for logic
learning in the large would also propel the agenda forward.

The integration of different kinds of inductive bias is another challenge. For example,
contemporary machine learning algorithms can mimic learning from experience and capture
typical syntactic reasoning patterns, and the kinds of algorithms developed in our work
crucially leverage semantic information through counterexamples. However, these class of
algorithms typically do not borrow techniques from each other.

Finally, developing general frameworks for logic learning with standard formats and
supporting solvers would be another worthy pursuit. The work in [326] identifies a class
of logics that admit decidable synthesis given a finite number of examples. The learning
algorithm is based on tree automata, whose relative merits and limitations we have discussed
in Chapter 6. Extending the availability of tools implementing state-of-the-art techniques for
logic learning (including ours) to synthesizing formulas (and inductive lemmas in particular)
in other widely used logics such as logics over ADTs and Separation Logic is also interesting.

193

The techniques here can be quite general: for example, although we perform goal-driven
lemma synthesis in Chapter 3, one can perhaps think of synthesizing inductive properties as a
kind of axiomatization for the logic at hand consisting of various recursively defined functions
which culls out the class of models with least-fixpoint interpretations from the larger class of
models that conform to fixpoint interpretations. This would open up the possibility of using
open-ended exploration techniques such as the one we used in Chapter 5.

Axiom Discovery The development of the Learning-Based Axiom Synthesis framework in
Chapter 5 opens up a new direction for computers to generate axiomatizations that were
hitherto found by humans. There are many potential applications. One kind of application
is to alleviate the burden of finding axioms in situations where the problem is tedious and
perhaps not interesting to a human. For example, the semantics of CPU instruction sets
can be seen as a logic with intricate semantics that can change frequently (see [327] for
work on synthesizing semantics of such instruction sets). The semantics of such instruction
sets is complex and researchers may not be motivated to axiomatize such relationships,
especially for multiple evolving CPUs. Axiomatizing ISAs can enable several downstream
applications, e.g., the work in [328] uses equational axioms between instructions to rewrite
programs into having constant-time implementations that avoid timing attacks. Another
example of a tedious axiomatization task is the work in [329] where the authors manually
axiomatized a theory of relational algebra with updates to prove equivalence of database
programs. This is an interesting variant to consider because unlike the domains we explore
in Chapter 5, we must likely use a reference implementation as the soundness checker and
use a weaker logic (perhaps the theory of uninterpreted functions) to build the independence
checker. Generating counterexamples or identifying the right grammar for synthesizing such
axioms appears challenging. Yet another application is learning metamorphic properties in
metamorphic testing, where program modules are tested against sequences or compositions
of function calls when specifications are not easy to think of or express for individual
methods (e.g. f(g(x) must be equal to g(f(x))). The axioms can then be used to test
other implementations (see the work in [330]). Proving the soundness of an axiom may
be intractable in this scenario since modular specifications for the methods may be hard!
In this case, we may resort to testing the axioms instead, perhaps using a test generator
as our standard of guarantee for correctness [255]. In general, exploring the possibility
of implementing the soundness/independence checkers and the counterexample generator
using oracles that are weaker than verification engines or considering settings with noise,
probabilities, or other forms of stochasticity would be novel challenges that would expand
the impact of the LAS framework.

194

Learning Concepts over Structured/Unstructured Data The above problems mainly
explore finding axioms automatically to support downstream applications. A second class
of applications pertains to problems where finding axioms is a goal of its own. A typical
example might involve learning axioms from a few examples described by a scientist, or
learning the underlying dynamics of a reactive system.

The problem of finding descriptors or summaries that characterizing data sets (structured
or unstructured) is a unique application in this space. This is related to the problem of
symbolic regression [306, 307, 308, 309] discussed in Chapter 6, but a key difference is that
data descriptors or summaries typically involve multiple concepts each of which may not
explain the data fully or (in a noisy setting) even hold true of all elements in the dataset.
This problem also shares similarities with the problem of rule mining. Related work on
this problem has been used to check conformance of entries in a database [331, 332] and
characterize sets of images for downstream conceptual analysis [333, 334]. Characterizing
processes that produce data, especially systems that allow an active learner to intervene and
analyze the results is another interesting variant of this problem.

195

References

[1] V. Doshi, “Analysis | A security breach in India has left a billion
people at risk of identity theft,” Washington Post, Dec. 2021. [On-
line]. Available: https://www.washingtonpost.com/news/worldviews/wp/2018/01/04/
a-security-breach-in-india-has-left-a-billion-people-at-risk-of-identity-theft/

[2] S. Matteson, “Report: Software failure caused $1.7 trillion in financial losses
in 2017,” Jan. 2018. [Online]. Available: https://www.techrepublic.com/article/
report-software-failure-caused-1-7-trillion-in-financial-losses-in-2017/

[3] C. D. of Motor Vehicles, “Autonomous Vehicle Collision Reports.” [Online]. Avail-
able: https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/
autonomous-vehicle-collision-reports/

[4] B. Pietsch, “2 Killed in Driverless Tesla Car Crash, Officials Say,” The New York
Times, Apr. 2021. [Online]. Available: https://www.nytimes.com/2021/04/18/business/
tesla-fatal-crash-texas.html

[5] T. Ball and S. K. Rajamani, “The slam project: Debugging system software via static
analysis,” p. 1–3, 2002. [Online]. Available: https://doi.org/10.1145/503272.503274

[6] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood, “Sel4: Formal verification of an os kernel,” in Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles, ser. SOSP ’09. New
York, NY, USA: Association for Computing Machinery, 2009. [Online]. Available:
https://doi.org/10.1145/1629575.1629596 p. 207–220.

[7] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and
M. Deardeuff, “How amazon web services uses formal methods,” Communi-
cations of the ACM, 2015. [Online]. Available: https://www.amazon.science/
publications/how-amazon-web-services-uses-formal-methods

[8] N. Rungta, “A billion smt queries a day,” in CAV 2022, 2022. [Online]. Available:
https://www.amazon.science/publications/a-billion-smt-queries-a-day

[9] K. R. M. Leino, “Dafny: An automatic program verifier for functional correctness,” in
Proceedings of the 16th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning, ser. LPAR’10. Berlin, Heidelberg: Springer-Verlag, 2010,
p. 348–370.

[10] The Coq development team, “The coq proof assistant reference manual,” 2018, Version
8.8.2.

196

https://www.washingtonpost.com/news/worldviews/wp/2018/01/04/a-security-breach-in-india-has-left-a-billion-people-at-risk-of-identity-theft/
https://www.washingtonpost.com/news/worldviews/wp/2018/01/04/a-security-breach-in-india-has-left-a-billion-people-at-risk-of-identity-theft/
https://www.techrepublic.com/article/report-software-failure-caused-1-7-trillion-in-financial-losses-in-2017/
https://www.techrepublic.com/article/report-software-failure-caused-1-7-trillion-in-financial-losses-in-2017/
https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/autonomous-vehicle-collision-reports/
https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/autonomous-vehicle-collision-reports/
https://www.nytimes.com/2021/04/18/business/tesla-fatal-crash-texas.html
https://www.nytimes.com/2021/04/18/business/tesla-fatal-crash-texas.html
https://doi.org/10.1145/503272.503274
https://doi.org/10.1145/1629575.1629596
https://www.amazon.science/publications/how-amazon-web-services-uses-formal-methods
https://www.amazon.science/publications/how-amazon-web-services-uses-formal-methods
https://www.amazon.science/publications/a-billion-smt-queries-a-day

[11] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in Proceedings of the 14th
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, ser. TACAS’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 337–340.

[12] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds,
and C. Tinelli, “Cvc4,” in Computer Aided Verification, G. Gopalakrishnan and
S. Qadeer, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 171–177.

[13] T. Trinh, Y. Wu, Q. Le, H. He, and T. Luong, “Solving olympiad geometry without
human demonstrations,” Nature, 2024.

[14] M. Eilers, M. Schwerhoff, and P. Müller, “Verification algorithms for automated separa-
tion logic verifiers,” in Computer Aided Verification, A. Gurfinkel and V. Ganesh, Eds.
Cham: Springer Nature Switzerland, 2024, pp. 362–386.

[15] A. Murali, L. Peña, E. Blanchard, C. Löding, and P. Madhusudan, “Model-guided
synthesis of inductive lemmas for fol with least fixpoints,” Proc. ACM Program. Lang.,
vol. 6, no. OOPSLA, 10 2022. [Online]. Available: https://doi.org/10.1145/3563354

[16] P. Krogmeier, Z. Lin, A. Murali, and P.Madhusudan, “Synthesizing axiomatizations
using logic learning,” Proc. ACM Program. Lang., vol. 6, no. OOPSLA, 10 2022.
[Online]. Available: https://doi.org/10.1145/3563348

[17] A. Murali, L. Peña, R. Jhala, and P. Madhusudan, “Complete first-order reasoning for
properties of functional programs,” Proc. ACM Program. Lang., vol. 7, no. OOPSLA2,
oct 2023. [Online]. Available: https://doi.org/10.1145/3622835

[18] A. Murali, C. Rivera, and P. Madhusudan, “Predictable verification using intrinsic
definitions,” Proc. ACM Program. Lang., vol. 8, no. PLDI, jun 2024. [Online]. Available:
https://doi.org/10.1145/3656450

[19] A. Murali, L. Peña, C. Löding, and P. Madhusudan, “A first-order logic with
frames,” ACM Trans. Program. Lang. Syst., vol. 45, no. 2, 5 2023. [Online]. Available:
https://doi.org/10.1145/3583057

[20] A. Murali, L. Peña, C. Löding, and P. Madhusudan, “A first-order logic with frames,”
in Programming Languages and Systems, P. Müller, Ed. Cham: Springer International
Publishing, 2020, pp. 515–543.

[21] A. Murali, H. Balakrishnan, A. Councilman, and P. Madhusudan, “Automating program
verification for frame logic,” Technical Report, 2024.

[22] U. Mathur, A. Murali, P. Krogmeier, P. Madhusudan, and M. Viswanathan, “Deciding
memory safety for single-pass heap-manipulating programs,” Proc. ACM Program.
Lang., vol. 4, no. POPL, 2020. [Online]. Available: https://doi.org/10.1145/3371103

197

https://doi.org/10.1145/3563354
https://doi.org/10.1145/3563348
https://doi.org/10.1145/3622835
https://doi.org/10.1145/3656450
https://doi.org/10.1145/3583057
https://doi.org/10.1145/3371103

[23] P. Krogmeier, U. Mathur, A. Murali, P. Madhusudan, and M. Viswanathan, “Decidable
synthesis of programs with uninterpreted functions,” in Computer Aided Verification,
S. K. Lahiri and C. Wang, Eds. Cham: Springer International Publishing, 2020, pp.
634–657.

[24] R. S. Boyer and J. S. Moore, A Computational Logic Handbook. USA: Academic Press
Professional, Inc., 1988.

[25] P. M. Rondon, M. Kawaguci, and R. Jhala, “Liquid types,” SIGPLAN Not., vol. 43, no. 6,
p. 159–169, jun 2008. [Online]. Available: https://doi.org/10.1145/1379022.1375602

[26] J. Hamza, N. Voirol, and V. Kunčak, “System fr: Formalized foundations for the
stainless verifier,” Proc. ACM Program. Lang., vol. 3, no. OOPSLA, oct 2019. [Online].
Available: https://doi.org/10.1145/3360592

[27] C. Löding, P. Madhusudan, and L. Peña, “Foundations for natural proofs and quantifier
instantiation,” PACMPL, vol. 2, no. POPL, pp. 10:1–10:30, 2018.

[28] A. R. Bradley and Z. Manna, The Calculus of Computation: Decision Procedures with
Applications to Verification. Berlin, Heidelberg: Springer-Verlag, 2007.

[29] C. G. Nelson, “Techniques for program verification,” Ph.D. dissertation, Stanford
University, Stanford, CA, USA, 1980, aAI8011683.

[30] G. Nelson and D. C. Oppen, “Simplification by cooperating decision procedures,” ACM
Trans. Program. Lang. Syst., vol. 1, no. 2, p. 245–257, oct 1979. [Online]. Available:
https://doi.org/10.1145/357073.357079

[31] Y. V. Matiyasevich, Hilbert’s Tenth Problem. Cambridge, MA, USA: MIT Press, 1993.

[32] N. Vazou, A. Tondwalkar, V. Choudhury, R. G. Scott, R. R. Newton, P. Wadler,
and R. Jhala, “Refinement reflection: complete verification with SMT,” Proc.
ACM Program. Lang., vol. 2, no. POPL, pp. 53:1–53:31, 2018. [Online]. Available:
https://doi.org/10.1145/3158141

[33] R. Blanc, V. Kuncak, E. Kneuss, and P. Suter, “An overview of the leon verification
system: Verification by translation to recursive functions,” in Proceedings of the 4th
Workshop on Scala, ser. SCALA ’13. New York, NY, USA: Association for Computing
Machinery, 2013. [Online]. Available: https://doi.org/10.1145/2489837.2489838

[34] J. Barwise, Handbook of Mathematical Logic. Amsterdam: North-Holland Publishing
Company, 1977.

[35] A. I. Mal’tsev, “Axiomatizable classes of locally free algebras of certain types,” Sibirsk.
Mat. Zh., vol. 3, pp. 729–743, 1962.

[36] W. Hodges, A Shorter Model Theory. USA: Cambridge University Press, 1997.

198

https://doi.org/10.1145/1379022.1375602
https://doi.org/10.1145/3360592
https://doi.org/10.1145/357073.357079
https://doi.org/10.1145/3158141
https://doi.org/10.1145/2489837.2489838

[37] N. S. Bjorner, “Integrating decision procedures for temporal verification,” Ph.D. disser-
tation, Stanford University, Stanford, CA, USA, 1999, aAI9924398.

[38] L. Kovács, S. Robillard, and A. Voronkov, “Coming to terms with quantified reasoning,”
in Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, ser. POPL ’17. New York, NY, USA: ACM, 2017, pp. 260–270.

[39] M. Presburger and D. Jabcquette, “On the completeness of a certain system of
arithmetic of whole numbers in which addition occurs as the only operation,” History
and Philosophy of Logic, vol. 12, no. 2, pp. 225–233, 1991. [Online]. Available:
https://doi.org/10.1080/014453409108837187

[40] T. A. Skolem, “Über die nicht-charakterisierbarkeit der zahlenreihe mittels endlich oder
abzählbar unendlich vieler aussagen mit ausschliesslich zahlenvariablen,” Fundamenta
Mathematicae, vol. 23, pp. 150–161, 1934.

[41] P. Suter, M. Dotta, and V. Kunćak, “Decision procedures for algebraic data types with
abstractions,” in Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL ’10. New York, NY, USA: ACM,
2010, pp. 199–210.

[42] H. B. Enderton, A mathematical introduction to logic. New York: Academic Press,
1972.

[43] G. Winskel, The Formal Semantics of Programming Languages: An Introduction.
Cambridge, MA, USA: MIT Press, 1993.

[44] C. Tinelli and C. G. Zarba, “Combining decision procedures for sorted theories,” in
Logics in Artificial Intelligence, J. J. Alferes and J. Leite, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 641–653.

[45] P. Wadler, “Propositions as types,” Commun. ACM, vol. 58, no. 12, p. 75–84, nov 2015.
[Online]. Available: https://doi.org/10.1145/2699407

[46] P. Suter, A. S. Köksal, and V. Kuncak, “Satisfiability modulo recursive programs,” in
Static Analysis, E. Yahav, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 298–315.

[47] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory,
Languages, and Computation (3rd Edition). USA: Addison-Wesley Longman Publishing
Co., Inc., 2006.

[48] C. Calcagno, P. Gardner, and M. Hague, “From separation logic to first-order logic,”
in Foundations of Software Science and Computational Structures, V. Sassone, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 395–409.

199

https://doi.org/10.1080/014453409108837187
https://doi.org/10.1145/2699407

[49] P. Madhusudan, X. Qiu, and A. Ştefănescu, “Recursive proofs for inductive tree data-
structures,” in Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL ’12. New York, NY, USA: ACM,
2012, pp. 123–136.

[50] X. Qiu, P. Garg, A. Ştefănescu, and P. Madhusudan, “Natural proofs for structure,
data, and separation,” in Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’13. New York, NY,
USA: ACM, 2013, pp. 231–242.

[51] P. Garg, C. Löding, P. Madhusudan, and D. Neider, “Ice: a robust framework for learn-
ing invariants,” in Computer Aided Verification, A. Biere and R. Bloem, Eds. Cham:
Springer International Publishing, 2014, pp. 69–87.

[52] K. S. Namjoshi and R. P. Kurshan, “Syntactic program transformations for automatic
abstraction,” in Computer Aided Verification, E. A. Emerson and A. P. Sistla, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 435–449.

[53] R. Alur, R. Bodík, E. Dallal, D. Fisman, P. Garg, G. Juniwal, H. Kress-Gazit,
P. Madhusudan, M. M. K. Martin, M. Raghothaman, S. Saha, S. A. Seshia, R. Singh,
A. Solar-Lezama, E. Torlak, and A. Udupa, Syntax-Guided Synthesis, 2015, p. 1–25.
[Online]. Available: http://dx.doi.org/10.3233/978-1-61499-495-4-1

[54] A. Solar-Lezama, G. Arnold, L. Tancau, R. Bodík, V. A. Saraswat, and S. A.
Seshia, “Sketching stencils,” in Proceedings of the ACM SIGPLAN 2007 Conference on
Programming Language Design and Implementation, San Diego, California, USA, June
10-13, 2007, J. Ferrante and K. S. McKinley, Eds. ACM, 2007. [Online]. Available:
https://doi.org/10.1145/1250734.1250754 pp. 167–178.

[55] A. Solar Lezama, “Program synthesis by sketching,” Ph.D. dissertation, EECS
Department, University of California, Berkeley, Dec 2008. [Online]. Available:
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-177.html

[56] E. Pek, X. Qiu, and P. Madhusudan, “Natural proofs for data structure manipulation
in C using separation logic,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’14. New York, NY,
USA: ACM, 2014, pp. 440–451.

[57] E. Grädel, P. G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Y. Vardi,
Y. Venema, and S. Weinstein, Finite Model Theory and Its Applications, ser. Texts in
Theoretical Computer Science. An EATCS Series. Springer, 2007. [Online]. Available:
https://doi.org/10.1007/3-540-68804-8

[58] A. Tarski, “A lattice-theoretical fixpoint theorem and its applications.” Pacific
Journal of Mathematics, vol. 5, no. 2, pp. 285 – 309, 1955. [Online]. Available:
https://projecteuclid.org/euclid.pjm/1103044538

200

http://dx.doi.org/10.3233/978-1-61499-495-4-1
https://doi.org/10.1145/1250734.1250754
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-177.html
https://doi.org/10.1007/3-540-68804-8
https://projecteuclid.org/euclid.pjm/1103044538

[59] L. Libkin, Elements Of Finite Model Theory (Texts in Theoretical Computer Science.
An Eatcs Series). SpringerVerlag, 2004.

[60] J. C. Reynolds, “Separation logic: A logic for shared mutable data structures,” in
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, ser.
LICS ’02. USA: IEEE Computer Society, 2002, p. 55–74.

[61] R. Alur, R. Singh, D. Fisman, and A. Solar-Lezama, “Search-based program
synthesis,” Commun. ACM, vol. 61, no. 12, p. 84–93, Nov. 2018. [Online]. Available:
https://doi.org/10.1145/3208071

[62] A. Murali, L. Peña, E. Blanchard, C. Löding, and P. Madhusudan, “Model-guided
synthesis of inductive lemmas for fol with least fixpoints (technical report),” 2022.
[Online]. Available: https://arxiv.org/abs/2009.10207

[63] A. Murali, L. Peña, E. Blanchard, C. Löding, and P. Madhusudan, “Artifact for oopsla
2022 article model-guided synthesis of inductive lemmas for fol with least fixpoints,”
2022. [Online]. Available: https://doi.org/10.1145/3554331

[64] A. Reynolds, H. Barbosa, A. Nötzli, C. Barrett, and C. Tinelli, “cvc4sy: Smart and
fast term enumeration for syntax-guided synthesis,” in Computer Aided Verification,
I. Dillig and S. Tasiran, Eds. Cham: Springer International Publishing, 2019, pp.
74–83.

[65] A. Reynolds and V. Kuncak, “Induction for smt solvers,” in Verification, Model Checking,
and Abstract Interpretation, D. D’Souza, A. Lal, and K. G. Larsen, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2015, pp. 80–98.

[66] W. Yang, G. Fedyukovich, and A. Gupta, “Lemma synthesis for automating induction
over algebraic data types,” in Principles and Practice of Constraint Programming,
T. Schiex and S. de Givry, Eds. Cham: Springer International Publishing, 2019, pp.
600–617.

[67] M. Sighireanu, J. A. Navarro Pérez, A. Rybalchenko, N. Gorogiannis, R. Iosif,
A. Reynolds, C. Serban, J. Katelaan, C. Matheja, T. Noll, F. Zuleger, W.-N. Chin,
Q. L. Le, Q.-T. Ta, T.-C. Le, T.-T. Nguyen, S.-C. Khoo, M. Cyprian, A. Rogalewicz,
T. Vojnar, C. Enea, O. Lengal, C. Gao, and Z. Wu, “Sl-comp: Competition of solvers
for separation logic,” in Tools and Algorithms for the Construction and Analysis of
Systems, D. Beyer, M. Huisman, F. Kordon, and B. Steffen, Eds. Cham: Springer
International Publishing, 2019, pp. 116–132.

[68] Q.-T. Ta, T. C. Le, S.-C. Khoo, and W.-N. Chin, “Automated lemma synthesis in
symbolic-heap separation logic,” Proc. ACM Program. Lang., vol. 2, no. POPL, Dec
2017. [Online]. Available: https://doi.org/10.1145/3158097

201

https://doi.org/10.1145/3208071
https://arxiv.org/abs/2009.10207
https://doi.org/10.1145/3554331
https://doi.org/10.1145/3158097

[69] P. W. O’Hearn, “A primer on separation logic (and automatic program verification and
analysis),” in Software Safety and Security - Tools for Analysis and Verification, ser.
NATO Science for Peace and Security Series - D: Information and Communication
Security, T. Nipkow, O. Grumberg, and B. Hauptmann, Eds. IOS Press, 2012, vol. 33,
pp. 286–318. [Online]. Available: https://doi.org/10.3233/978-1-61499-028-4-286

[70] P. W. O’Hearn, J. C. Reynolds, and H. Yang, “Local reasoning about programs that
alter data structures,” in Proceedings of the 15th International Workshop on Computer
Science Logic, ser. CSL ’01. London, UK, UK: Springer-Verlag, 2001. [Online].
Available: http://dl.acm.org/citation.cfm?id=647851.737404 pp. 1–19.

[71] L. de Moura and N. Bjørner, “Generalized, efficient array decision procedures,” in 2009
Formal Methods in Computer-Aided Design. IEEE, 2009, pp. 45–52.

[72] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies, “Vcc: A practical system for verifying concurrent c,” in
Theorem Proving in Higher Order Logics, S. Berghofer, T. Nipkow, C. Urban, and
M. Wenzel, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 23–42.

[73] J. Condit, B. Hackett, S. K. Lahiri, and S. Qadeer, “Unifying type checking and
property checking for low-level code,” SIGPLAN Not., vol. 44, no. 1, p. 302–314, jan
2009. [Online]. Available: https://doi.org/10.1145/1594834.1480921

[74] B. Kragl and S. Qadeer, “The civl verifier,” in 2021 Formal Methods in Computer Aided
Design (FMCAD), 2021, pp. 143–152.

[75] D. Dill, W. Grieskamp, J. Park, S. Qadeer, M. Xu, and E. Zhong, “Fast and reliable
formal verification of smart contracts with the move prover,” in Tools and Algorithms
for the Construction and Analysis of Systems, D. Fisman and G. Rosu, Eds. Cham:
Springer International Publishing, 2022, pp. 183–200.

[76] C. Tinelli and C. G. Zarba, “Combining decision procedures for sorted theories,” in
Logics in Artificial Intelligence, J. J. Alferes and J. Leite, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 641–653.

[77] C. B. Jones, “The role of auxiliary variables in the formal development of concurrent
programs,” in Reflections on the Work of C.A.R. Hoare, A. Roscoe, C. B. Jones, and
K. R. Wood, Eds. London: Springer London, 2010, pp. 167–187. [Online]. Available:
https://doi.org/10.1007/978-1-84882-912-1_8

[78] P. Lucas, “Two constructive realizations of the block concept and their equivalence,
ibm lab,” Vienna TR 25.085, Tech. Rep., 1968.

[79] J.-C. Filliâtre, L. Gondelman, and A. Paskevich, “The spirit of ghost code,” Formal
Methods in System Design, vol. 48, pp. 152–174, 2016.

[80] J. C. Reynolds, The craft of programming, ser. Prentice Hall International series in
computer science. Prentice Hall, 1981.

202

https://doi.org/10.3233/978-1-61499-028-4-286
http://dl.acm.org/citation.cfm?id=647851.737404
https://doi.org/10.1145/1594834.1480921
https://doi.org/10.1007/978-1-84882-912-1_8

[81] S. Qadeer, “Boogie pull request #669: Monomorphization of polymorphic maps and
binders,” 2023. [Online]. Available: https://github.com/boogie-org/boogie/pull/669

[82] O. Lee, H. Yang, and R. Petersen, “Program analysis for overlaid data structures,”
in Computer Aided Verification, G. Gopalakrishnan and S. Qadeer, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 592–608.

[83] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino, “Boogie:
A modular reusable verifier for object-oriented programs,” in Formal Methods for
Components and Objects, F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P. de Roever,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 364–387.

[84] P. Blackburn, J. F. A. K. van Benthem, and F. Wolter, Eds., Handbook of Modal
Logic, ser. Studies in logic and practical reasoning. Amsterdam, Netherlands:
Elsevier, 2007, vol. 3. [Online]. Available: https://www.sciencedirect.com/bookseries/
studies-in-logic-and-practical-reasoning/vol/3/suppl/C

[85] A. Pnueli, “The temporal logic of programs,” in Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, ser. SFCS ’77. USA: IEEE
Computer Society, 1977. [Online]. Available: https://doi.org/10.1109/SFCS.1977.32 p.
46–57.

[86] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchronization skeletons
using branching time temporal logic,” in Logics of Programs, D. Kozen, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1982, pp. 52–71.

[87] W. Hodges, A Shorter Model Theory. USA: Cambridge University Press, 1997.

[88] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger, and
D. Walker, “Netkat: Semantic foundations for networks,” in Proceedings of the 41st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ser.
POPL ’14. New York, NY, USA: Association for Computing Machinery, 2014.
[Online]. Available: https://doi.org/10.1145/2535838.2535862 p. 113–126.

[89] P. W. O’Hearn, J. C. Reynolds, and H. Yang, “Local reasoning about programs that
alter data structures,” in Proceedings of the 15th International Workshop on Computer
Science Logic, ser. CSL ’01. Berlin, Heidelberg: Springer-Verlag, 2001. [Online].
Available: https://dl.acm.org/doi/10.5555/647851.737404 p. 1–19.

[90] L. Kovács and A. Voronkov, “First-order theorem proving and vampire,” in Computer
Aided Verification, N. Sharygina and H. Veith, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 1–35.

[91] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa, “Syntax-guided synthesis,” in
2013 Formal Methods in Computer-Aided Design. Portland, OR, USA: IEEE, 2013,
pp. 1–8.

203

https://github.com/boogie-org/boogie/pull/669
https://www.sciencedirect.com/bookseries/studies-in-logic-and-practical-reasoning/vol/3/suppl/C
https://www.sciencedirect.com/bookseries/studies-in-logic-and-practical-reasoning/vol/3/suppl/C
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/2535838.2535862
https://dl.acm.org/doi/10.5555/647851.737404

[92] P. Blackburn, J. F. A. K. v. Benthem, and F. Wolter, Handbook of Modal Logic, Volume
3 (Studies in Logic and Practical Reasoning). USA: Elsevier Science Inc., 2006.

[93] J. Van Benthem, Correspondence Theory. Dordrecht: Springer Netherlands, 1984, pp.
167–247. [Online]. Available: https://doi.org/10.1007/978-94-009-6259-0_4

[94] D. Kozen, “A completeness theorem for kleene algebras and the algebra of regular
events,” Information and Computation, vol. 110, no. 2, pp. 366–390, 1994. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0890540184710376

[95] J. H. Conway, Regular algebra and finite machines, ser. Chapman and Hall mathematics
series. London, UK: Chapman and Hall, 1971.

[96] A. Salomaa, “Two complete axiom systems for the algebra of regular events,”
J. ACM, vol. 13, no. 1, p. 158–169, 1966. [Online]. Available: https:
//doi.org/10.1145/321312.321326

[97] V. Redko, “On defining relations for the algebra of regular events,” Ukrainian Mathe-
matical Journal, vol. 16, no. 2, pp. 120–126, 1964, in Russian.

[98] P. Smith, “The galois connection between syntax and semantics,” Jun 2010. [Online].
Available: https://www.logicmatters.net/resources/pdfs/Galois.pdf

[99] F. W. Lawvere, “Adjointness in foundations,” Dialectica, vol. 23, no. 3/4, pp. 281–296,
1969. [Online]. Available: http://www.jstor.org/stable/42969800

[100] W. Hodges, Model Theory, ser. Encyclopedia of Mathematics and its Applications.
Cambridge, UK: Cambridge University Press, 1993.

[101] C. Löding, P. Madhusudan, and D. Neider, “Abstract learning frameworks for synthesis,”
in Tools and Algorithms for the Construction and Analysis of Systems, M. Chechik and
J.-F. Raskin, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 167–185.

[102] S. C. Kleene, Representation of Events in Nerve Nets and Finite Automata. Princeton,
NJ, USA: Princeton University Press, 1956, pp. 3–42.

[103] J. L. Gischer, “Partial orders and the axiomatic theory of shuffle (pomsets),” Ph.D.
dissertation, Stanford University, Stanford, CA, USA, 1985, aAI8506191.

[104] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata Theory,
Languages, and Computation (3rd Edition). USA: Addison-Wesley Longman Publishing
Co., Inc., 2006.

[105] T. Lev-Ami, N. Immerman, T. Reps, M. Sagiv, S. Srivastava, and G. Yorsh, “Simulating
reachability using first-order logic with applications to verification of linked data
structures,” Logical Methods in Computer Science, vol. 5, 04 2009.

204

https://doi.org/10.1007/978-94-009-6259-0_4
https://www.sciencedirect.com/science/article/pii/S0890540184710376
https://doi.org/10.1145/321312.321326
https://doi.org/10.1145/321312.321326
https://www.logicmatters.net/resources/pdfs/Galois.pdf
http://www.jstor.org/stable/42969800

[106] S. Lahiri and S. Qadeer, “Back to the future: Revisiting precise program verification
using smt solvers,” SIGPLAN Not., vol. 43, no. 1, p. 171–182, jan 2008. [Online].
Available: https://doi.org/10.1145/1328897.1328461

[107] J. Berdine, C. Calcagno, and P. W. O’Hearn, “A decidable fragment of separation logic,”
in FSTTCS 2004: Foundations of Software Technology and Theoretical Computer
Science, K. Lodaya and M. Mahajan, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 97–109.

[108] J. Berdine, C. Calcagno, and P. W. O’Hearn, “Smallfoot: Modular automatic assertion
checking with separation logic,” in Proceedings of the 4th International Conference
on Formal Methods for Components and Objects, ser. FMCO’05. Berlin, Heidelberg:
Springer-Verlag, 2006, pp. 115–137.

[109] J. Berdine, C. Calcagno, and P. W. O’Hearn, “A decidable fragment of separation
logic,” in Proceedings of the 24th International Conference on Foundations of Software
Technology and Theoretical Computer Science, ser. FSTTCS’04, 2004, pp. 97–109.

[110] J. Berdine, C. Calcagno, and P. W. O’Hearn, “Symbolic execution with separation
logic,” in Proceedings of the Third Asian Conference on Programming Languages and
Systems, ser. APLAS’05, 2005, pp. 52–68.

[111] B. Cook, C. Haase, J. Ouaknine, M. Parkinson, and J. Worrell, “Tractable reasoning in
a fragment of separation logic,” in Proceedings of the 22nd International Conference on
Concurrency Theory, ser. CONCUR’11, 2011, pp. 235–249.

[112] J. A. Navarro Pérez and A. Rybalchenko, “Separation logic + superposition calculus
= heap theorem prover,” in Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’11. New York, NY,
USA: ACM, 2011, pp. 556–566.

[113] J. A. N. Pérez and A. Rybalchenko, “Separation logic modulo theories,” in Programming
Languages and Systems (APLAS). Cham: Springer International Publishing, 2013,
pp. 90–106.

[114] J. Pagel, “Decision procedures for separation logic: beyond symbolic heaps,” Ph.D.
dissertation, Wien, 2020.

[115] R. Iosif, A. Rogalewicz, and J. Simacek, “The tree width of separation logic with
recursive definitions,” in Automated Deduction – CADE-24, M. P. Bonacina, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 21–38.

[116] M. Echenim, R. Iosif, and N. Peltier, “Unifying decidable entailments in separation
logic with inductive definitions,” in Automated Deduction – CADE 28, A. Platzer and
G. Sutcliffe, Eds. Cham: Springer International Publishing, 2021, pp. 183–199.

205

https://doi.org/10.1145/1328897.1328461

[117] S. Itzhaky, A. Banerjee, N. Immerman, O. Lahav, A. Nanevski, and M. Sagiv, “Modular
reasoning about heap paths via effectively propositional formulas,” in Proceedings of the
41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
ser. POPL ’14. New York, NY, USA: ACM, 2014, pp. 385–396.

[118] S. Itzhaky, A. Banerjee, N. Immerman, A. Nanevski, and M. Sagiv, “Effectively-
propositional reasoning about reachability in linked data structures,” in Proceedings
of the 25th International Conference on Computer Aided Verification, ser. CAV’13.
Berlin, Heidelberg: Springer-Verlag, 2013, pp. 756–772.

[119] S. Itzhaky, N. Bjørner, T. Reps, M. Sagiv, and A. Thakur, “Property-directed shape
analysis,” in Proceedings of the 16th International Conference on Computer Aided
Verification, ser. CAV’14. Berlin, Heidelberg: Springer-Verlag, 2014, pp. 35–51.

[120] R. Piskac, T. Wies, and D. Zufferey, “Automating separation logic using SMT,” in
Proceedings of the 25th International Conference on Computer Aided Verification, ser.
CAV’13. Berlin, Heidelberg: Springer-Verlag, 2013, pp. 773–789.

[121] P. Madhusudan, G. Parlato, and X. Qiu, “Decidable logics combining heap structures
and data,” SIGPLAN Not., vol. 46, no. 1, p. 611–622, jan 2011. [Online]. Available:
https://doi.org/10.1145/1925844.1926455

[122] P. Madhusudan and X. Qiu, “Efficient decision procedures for heaps using strand,” in
Static Analysis, E. Yahav, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 43–59.

[123] R. Iosif, A. Rogalewicz, and J. Simacek, “The tree width of separation logic with
recursive definitions,” in Automated Deduction – CADE-24, M. P. Bonacina, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 21–38.

[124] S. Demri and M. Deters, “Separation logics and modalities: a survey,” Journal of
Applied Non-Classical Logics, vol. 25, pp. 50–99, 2015.

[125] I. T. Kassios, “Dynamic frames: Support for framing, dependencies and sharing without
restrictions,” in FM 2006: Formal Methods, J. Misra, T. Nipkow, and E. Sekerinski,
Eds. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 268–283.

[126] I. T. Kassios, “The dynamic frames theory,” Form. Asp. Comput., vol. 23, no. 3, pp.
267–288, May 2011.

[127] A. Banerjee, D. A. Naumann, and S. Rosenberg, “Local reasoning for global invariants,
Part I: Region logic,” J. ACM, vol. 60, no. 3, pp. 18:1–18:56, June 2013. [Online].
Available: http://doi.acm.org/10.1145/2485982

[128] A. Banerjee and D. Naumann, “Local reasoning for global invariants, Part II: Dynamic
boundaries,” Journal of the ACM (JACM), vol. 60, 06 2013.

206

https://doi.org/10.1145/1925844.1926455
http://doi.acm.org/10.1145/2485982

[129] A. Banerjee, D. A. Naumann, and S. Rosenberg, “Regional logic for local reasoning
about global invariants,” in ECOOP 2008 – Object-Oriented Programming, J. Vitek,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 387–411.

[130] J. Smans, B. Jacobs, and F. Piessens, “Implicit dynamic frames,” ACM Trans. Program.
Lang. Syst., vol. 34, no. 1, pp. 2:1–2:58, May 2012.

[131] K. R. M. Leino and P. Müller, “A basis for verifying multi-threaded programs,” in
Programming Languages and Systems, G. Castagna, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 378–393.

[132] J. Smans, B. Jacobs, and F. Piessens, “Implicit dynamic frames: Combining dy-
namic frames and separation logic,” in ECOOP 2009 – Object-Oriented Programming,
S. Drossopoulou, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp.
148–172.

[133] M. J. Parkinson and A. J. Summers, “The relationship between separation logic and
implicit dynamic frames,” in Programming Languages and Systems, G. Barthe, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 439–458.

[134] F. Bobot and J.-C. Filliâtre, “Separation predicates: A taste of separation logic in
first-order logic,” in Formal Methods and Software Engineering, T. Aoki and K. Taguchi,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 167–181.

[135] P. W. O’Hearn, H. Yang, and J. C. Reynolds, “Separation and information hiding,”
in Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, ser. POPL ’04. New York, NY, USA: ACM, 2004, pp.
268–280.

[136] M. J. Parkinson and A. J. Summers, “The relationship between separation logic and
implicit dynamic frames,” in Programming Languages and Systems, G. Barthe, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 439–458.

[137] M. Sagiv, T. Reps, and R. Wilhelm, “Parametric shape analysis via 3-valued logic,”
ACM Trans. Program. Lang. Syst., vol. 24, no. 3, p. 217–298, may 2002. [Online].
Available: https://doi.org/10.1145/514188.514190

[138] S. Kleene and M. Beeson, Introduction to Metamathematics. Ishi Press International,
2009. [Online]. Available: https://books.google.com/books?id=HZAjPwAACAAJ

[139] T. Lev-Ami, N. Immerman, T. Reps, M. Sagiv, S. Srivastava, and G. Yorsh, “Sim-
ulating reachability using first-order logic with applications to verification of linked
data structures,” in Automated Deduction – CADE-20, R. Nieuwenhuis, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 99–115.

[140] P. Müller, M. Schwerhoff, and A. J. Summers, “Automatic verification of iterated
separating conjunctions using symbolic execution,” in Computer Aided Verification,
S. Chaudhuri and A. Farzan, Eds. Cham: Springer International Publishing, 2016,
pp. 405–425.

207

https://doi.org/10.1145/514188.514190
https://books.google.com/books?id=HZAjPwAACAAJ

[141] D. Distefano and M. Parkinson, “jstar: Towards practical verification for java,” vol. 43,
09 2008, pp. 213–226.

[142] S. Krishna, A. J. Summers, and T. Wies, “Local reasoning for global graph properties,”
in Programming Languages and Systems - 29th European Symposium on Programming,
ESOP 2020, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, ser. Lecture
Notes in Computer Science, P. Müller, Ed., vol. 12075. Springer, 2020. [Online].
Available: https://doi.org/10.1007/978-3-030-44914-8_12 pp. 308–335.

[143] R. Meyer, T. Wies, and S. Wolff, “Make flows small again: Revisiting the flow
framework,” in Tools and Algorithms for the Construction and Analysis of Systems:
29th International Conference, TACAS 2023, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2023, Paris, France, April
22–27, 2023, Proceedings, Part I. Berlin, Heidelberg: Springer-Verlag, 2023. [Online].
Available: https://doi.org/10.1007/978-3-031-30823-9_32 p. 628–646.

[144] A. Hobor and J. Villard, “The ramifications of sharing in data structures,” in Proceedings
of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’13. New York, NY, USA: Association for Computing
Machinery, 2013. [Online]. Available: https://doi.org/10.1145/2429069.2429131 p.
523–536.

[145] A. Murali and P. Madhusudan, “Delta logics: Logics for change,” Technical Report,
2024.

[146] T. Reps, M. Sagiv, and A. Loginov, “Finite differencing of logical formulas for static
analysis,” ACM Trans. Program. Lang. Syst., vol. 32, no. 6, Aug. 2010. [Online].
Available: https://doi.org/10.1145/1749608.1749613

[147] T. Antonopoulos, N. Gorogiannis, C. Haase, M. Kanovich, and J. Ouaknine, “Founda-
tions for decision problems in separation logic with general inductive predicates,” in
Foundations of Software Science and Computation Structures, A. Muscholl, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, pp. 411–425.

[148] R. Brochenin, S. Demri, and E. Lozes, “On the almighty wand,” in Computer Science
Logic, M. Kaminski and S. Martini, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 323–338.

[149] W. N. Chin, C. David, H. H. Nguyen, and S. Qin, “Automated verification of shape, size
and bag properties,” in 12th IEEE International Conference on Engineering Complex
Computer Systems (ICECCS 2007), 2007, pp. 307–320.

208

https://doi.org/10.1007/978-3-030-44914-8_12
https://doi.org/10.1007/978-3-031-30823-9_32
https://doi.org/10.1145/2429069.2429131
https://doi.org/10.1145/1749608.1749613

[150] M. Sammler, R. Lepigre, R. Krebbers, K. Memarian, D. Dreyer, and D. Garg,
“Refinedc: automating the foundational verification of c code with refined ownership
types,” in Proceedings of the 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, ser. PLDI 2021. New
York, NY, USA: Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3453483.3454036 p. 158–174.

[151] J. Brotherston, D. Distefano, and R. L. Petersen, “Automated cyclic entailment
proofs in separation logic,” in Proceedings of the 23rd International Conference on
Automated Deduction, ser. CADE’11. Berlin, Heidelberg: Springer-Verlag, 2011.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2032266.2032278 pp. 131–146.

[152] Q.-T. Ta, T. C. Le, S.-C. Khoo, and W.-N. Chin, “Automated mutual explicit induction
proof in separation logic,” in FM 2016: Formal Methods, J. Fitzgerald, C. Heitmeyer,
S. Gnesi, and A. Philippou, Eds. Cham: Springer International Publishing, 2016, pp.
659–676.

[153] J. Brotherston, “Cyclic proofs for first-order logic with inductive definitions,” in Auto-
mated Reasoning with Analytic Tableaux and Related Methods, B. Beckert, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 78–92.

[154] J. Brotherston, N. Gorogiannis, and R. L. Petersen, “A generic cyclic theorem prover,”
in Proceedings of APLAS-10, ser. LNCS. Springer, 2012, pp. 350–367.

[155] J.-C. Filliâtre and A. Paskevich, “Why3 — where programs meet provers,” in Program-
ming Languages and Systems, M. Felleisen and P. Gardner, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 125–128.

[156] F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich, “Why3: Shepherd Your
Herd of Provers,” in Boogie 2011: First International Workshop on Intermediate
Verification Languages. Wroclaw, Poland: HAL-Inria, 2011. [Online]. Available:
https://hal.inria.fr/hal-00790310 pp. 53–64.

[157] A. Banerjee, M. Barnett, and D. A. Naumann, “Boogie meets regions: A verification
experience report,” in Verified Software: Theories, Tools, Experiments, N. Shankar and
J. Woodcock, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 177–191.

[158] P. Müller, M. Schwerhoff, and A. J. Summers, “Viper: A verification infrastructure
for permission-based reasoning,” in Verification, Model Checking, and Abstract Inter-
pretation (VMCAI), ser. LNCS, B. Jobstmann and K. R. M. Leino, Eds., vol. 9583.
Springer-Verlag, 2016, pp. 41–62.

[159] S. Heule, I. T. Kassios, P. Müller, and A. J. Summers, “Verification condition generation
for permission logics with abstract predicates and abstraction functions,” in ECOOP
2013 – Object-Oriented Programming, G. Castagna, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 451–476.

209

https://doi.org/10.1145/3453483.3454036
http://dl.acm.org/citation.cfm?id=2032266.2032278
https://hal.inria.fr/hal-00790310

[160] M. Eilers, M. Schwerhoff, and P. Müller, “Verification algorithms for automated separa-
tion logic verifiers,” in Computer Aided Verification, A. Gurfinkel and V. Ganesh, Eds.
Cham: Springer Nature Switzerland, 2024, pp. 362–386.

[161] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F. Piessens,
“Verifast: A powerful, sound, predictable, fast verifier for c and java,” in Proceedings of
the Third International Conference on NASA Formal Methods, ser. NFM’11. Berlin,
Heidelberg: Springer-Verlag, 2011, p. 41–55.

[162] D. Jost and A. J. Summers, “An automatic encoding from verifast predicates into
implicit dynamic frames,” in Verified Software: Theories, Tools, Experiments, E. Cohen
and A. Rybalchenko, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp.
202–221.

[163] R. Piskac, T. Wies, and D. Zufferey, “Automating separation logic with trees and data,”
in Proceedings of the 16th International Conference on Computer Aided Verification,
ser. CAV’14. Berlin, Heidelberg: Springer-Verlag, 2014, pp. 711–728.

[164] R. Piskac, T. Wies, and D. Zufferey, “Grasshopper,” in Tools and Algorithms for the
Construction and Analysis of Systems, E. Ábrahám and K. Havelund, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, pp. 124–139.

[165] G. Reger, M. Suda, and A. Voronkov, “Instantiation and pretending to be an smt solver
with vampire,” CEUR Workshop Proceedings, vol. 1889, pp. 63–75, Jan. 2017, 15th
International Workshop on Satisfiability Modulo Theories, SMT 2017 ; Conference
date: 22-07-2017 Through 23-07-2017.

[166] C. Barrett, P. Fontaine, and C. Tinelli, “The smt-lib standard: Version 2.6,”
2017. [Online]. Available: http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.
6-r2017-07-18.pdf

[167] C. Tinelli and M. Harandi, “A new correctness proof of the nelson-oppen combination
procedure,” in Frontiers of Combining Systems: First International Workshop, Munich,
March 1996, F. Baader and K. U. Schulz, Eds. Dordrecht: Springer Netherlands,
1996. [Online]. Available: https://doi.org/10.1007/978-94-009-0349-4_5 pp. 103–119.

[168] T. Wies, R. Piskac, and V. Kuncak, “Combining theories with shared set operations,” in
Frontiers of Combining Systems, S. Ghilardi and R. Sebastiani, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 366–382.

[169] F. Baader and S. Ghilardi, “Connecting many-sorted theories,” in Automated Deduction
– CADE-20, R. Nieuwenhuis, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 278–294.

[170] S. Ghilardi, “Model-theoretic methods in combined constraint satisfiability,” Journal
of Automated Reasoning, vol. 33, no. 3, pp. 221–249, Oct 2004. [Online]. Available:
https://doi.org/10.1007/s10817-004-6241-5

210

http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2017-07-18.pdf
http://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2017-07-18.pdf
https://doi.org/10.1007/978-94-009-0349-4_5
https://doi.org/10.1007/s10817-004-6241-5

[171] P. Fontaine, “Combinations of Theories and the Bernays-Schönfinkel-Ramsey
Class,” in 4th International Verification Workshop - VERIFY’07, ser. CEUR
Workshop Proceedings, B. Beckert, Ed., vol. 259. Bremen, Germany: HAL-Inria,
July 2007, uRL : http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-
WS/Vol-259/paper06.pdf. [Online]. Available: https://hal.inria.fr/inria-00186639 pp.
37–54.

[172] S. Krstic, A. Goel, J. Grundy, and C. Tinelli, “Combined satisfiability modulo parametric
theories,” in Proceedings of the 13th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, ser. TACAS’07. Berlin, Heidelberg:
Springer-Verlag, 2007, p. 602–617.

[173] C. Tinelli and C. G. Zarba, “Combining nonstably infinite theories,” Journal of
Automated Reasoning, vol. 34, no. 3, pp. 209–238, Apr 2005. [Online]. Available:
https://doi.org/10.1007/s10817-005-5204-9

[174] C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans, “On local reasoning in verifi-
cation,” in Tools and Algorithms for the Construction and Analysis of Systems, C. R.
Ramakrishnan and J. Rehof, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 265–281.

[175] V. Sofronie-Stokkermans, “Locality results for certain extensions of theories with
bridging functions,” in Automated Deduction – CADE-22, R. A. Schmidt, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 67–83.

[176] Z. Manna, H. B. Sipma, and T. Zhang, “Verifying balanced trees,” in Logical Foundations
of Computer Science, S. N. Artemov and A. Nerode, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 363–378.

[177] T. Zhang, H. B. Sipma, and Z. Manna, “Decision procedures for term
algebras with integer constraints,” Information and Computation, vol. 204,
no. 10, pp. 1526–1574, 2006, combining Logical Systems. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0890540106000630

[178] H. Hojjat and P. Rümmer, “Deciding and interpolating algebraic data types by
reduction,” in 19th International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing, SYNASC 2017, Timisoara, Romania, September 21-24,
2017, T. Jebelean, V. Negru, D. Petcu, D. Zaharie, T. Ida, and S. M. Watt,
Eds. Los Alamitos, CA, USA: IEEE Computer Society, 2017. [Online]. Available:
https://doi.org/10.1109/SYNASC.2017.00033 pp. 145–152.

[179] D. Kapur, R. Majumdar, and C. G. Zarba, “Interpolation for data structures,”
in Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. SIGSOFT ’06/FSE-14. New York,
NY, USA: Association for Computing Machinery, 2006. [Online]. Available:
https://doi.org/10.1145/1181775.1181789 p. 105–116.

211

https://hal.inria.fr/inria-00186639
https://doi.org/10.1007/s10817-005-5204-9
https://www.sciencedirect.com/science/article/pii/S0890540106000630
https://doi.org/10.1109/SYNASC.2017.00033
https://doi.org/10.1145/1181775.1181789

[180] D. Monniaux, “Quantifier elimination by lazy model enumeration,” in Computer Aided
Verification, T. Touili, B. Cook, and P. Jackson, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 585–599.

[181] R. Stansifer, “Presburger’s article on integer airthmetic: Remarks and translation,”
Cornell University, Computer Science Department, Tech. Rep. TR84-639, September
1984. [Online]. Available: http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/
Display/cul.cs/TR84-639

[182] S. Cruanes, S. Schulz, and P. Vukmirović, “Faster, Higher, Stronger: E 2.3,” in TACAS
2019, ser. LNAI, vol. 11716, Prague, Czech Republic, Apr. 2019. [Online]. Available:
https://inria.hal.science/hal-02296188 pp. 495–507.

[183] P. Backeman and P. Rümmer, “Theorem proving with bounded rigid e-unification,” in
Automated Deduction – CADE-25 :, ser. Lecture Notes in Computer Science, no. 9195,
2015, pp. 572–587.

[184] J. Otten, “leancop 2.0 and ileancop 1.2: High performance lean theorem
proving in classical and intuitionistic logic (system descriptions),” in Proceedings
of the 4th International Joint Conference on Automated Reasoning, ser.
IJCAR ’08. Berlin, Heidelberg: Springer-Verlag, 2008. [Online]. Available:
https://doi.org/10.1007/978-3-540-71070-7_23 p. 283–291.

[185] D. Detlefs, G. Nelson, and J. B. Saxe, “Simplify: A theorem prover for program
checking,” J. ACM, vol. 52, no. 3, p. 365–473, May 2005. [Online]. Available:
https://doi.org/10.1145/1066100.1066102

[186] L. de Moura and N. Bjørner, “Efficient e-matching for smt solvers,” in Automated
Deduction – CADE-21, F. Pfenning, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 183–198.

[187] Y. Ge, C. Barrett, and C. Tinelli, “Solving quantified verification conditions using
satisfiability modulo theories,” in Automated Deduction – CADE-21, F. Pfenning, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 167–182.

[188] Y. Ge and L. de Moura, “Complete instantiation for quantified formulas in satisfiabiliby
modulo theories,” in Computer Aided Verification, A. Bouajjani and O. Maler, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 306–320.

[189] A. Reynolds, C. Tinelli, and L. de Moura, “Finding conflicting instances of quantified
formulas in smt,” in Proceedings of the 14th Conference on Formal Methods in Computer-
Aided Design, ser. FMCAD ’14. Austin, Texas: FMCAD Inc, 2014, p. 195–202.

[190] H. Barbosa, P. Fontaine, and A. Reynolds, “Congruence closure with free variables,”
in Tools and Algorithms for the Construction and Analysis of Systems, A. Legay and
T. Margaria, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, pp. 214–230.

212

http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR84-639
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR84-639
https://inria.hal.science/hal-02296188
https://doi.org/10.1007/978-3-540-71070-7_23
https://doi.org/10.1145/1066100.1066102

[191] A. Reynolds, H. Barbosa, and P. Fontaine, “Revisiting Enumerative Instantiation,”
in TACAS 2018 - 24th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, ser. LNCS, D. Beyer and M. Huisman,
Eds., vol. 10806. Thessaloniki, Greece: Springer, Apr. 2018. [Online]. Available:
https://hal.science/hal-01877055 p. 20.

[192] A. R. Bradley, Z. Manna, and H. B. Sipma, “What’s decidable about arrays?” in
Verification, Model Checking, and Abstract Interpretation, E. A. Emerson and K. S.
Namjoshi, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 427–442.

[193] I. Garcia-Contreras, V. K. H. Govind, S. Shoham, and A. Gurfinkel, “Fast approxima-
tions of quantifier elimination,” in Computer Aided Verification, C. Enea and A. Lal,
Eds. Cham: Springer Nature Switzerland, 2023, pp. 64–86.

[194] K. R. M. Leino, “This is boogie 2,” June 2008, technical Report. [Online]. Available:
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/

[195] T. dafny-lang community, 2022. [Online]. Available: https://dafny-lang.github.io/
dafny/DafnyRef/DafnyRef

[196] M. Moskal, “Programming with triggers,” in Proceedings of the 7th International
Workshop on Satisfiability Modulo Theories, ser. SMT ’09. New York, NY,
USA: Association for Computing Machinery, 2009. [Online]. Available: https:
//doi.org/10.1145/1670412.1670416 p. 20–29.

[197] K. R. M. Leino and C. Pit-Claudel, “Trigger selection strategies to stabilize program
verifiers,” in Computer Aided Verification, S. Chaudhuri and A. Farzan, Eds. Cham:
Springer International Publishing, 2016, pp. 361–381.

[198] Y. M. Y. Feldman, O. Padon, N. Immerman, M. Sagiv, and S. Shoham, “Bounded
quantifier instantiation for checking inductive invariants,” in Tools and Algorithms for
the Construction and Analysis of Systems, A. Legay and T. Margaria, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2017, pp. 76–95.

[199] M. Y. Vardi, “The complexity of relational query languages (extended abstract),” in
Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing,
ser. STOC ’82. New York, NY, USA: Association for Computing Machinery, 1982.
[Online]. Available: https://doi.org/10.1145/800070.802186 p. 137–146.

[200] N. Immerman, “Relational queries computable in polynomial time (extended abstract),”
in Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing,
ser. STOC ’82. New York, NY, USA: Association for Computing Machinery, 1982.
[Online]. Available: https://doi.org/10.1145/800070.802187 p. 147–152.

[201] A. V. Aho and J. D. Ullman, “Universality of data retrieval languages,” in Proceedings
of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, ser. POPL ’79. New York, NY, USA: Association for Computing
Machinery, 1979. [Online]. Available: https://doi.org/10.1145/567752.567763 p.
110–119.

213

https://hal.science/hal-01877055
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://dafny-lang.github.io/dafny/DafnyRef/DafnyRef
https://dafny-lang.github.io/dafny/DafnyRef/DafnyRef
https://doi.org/10.1145/1670412.1670416
https://doi.org/10.1145/1670412.1670416
https://doi.org/10.1145/800070.802186
https://doi.org/10.1145/800070.802187
https://doi.org/10.1145/567752.567763

[202] A. K. Chandra and D. Harel, “Structure and complexity of relational queries,”
in Proceedings of the 21st Annual Symposium on Foundations of Computer
Science, ser. SFCS ’80. USA: IEEE Computer Society, 1980. [Online]. Available:
https://doi.org/10.1109/SFCS.1980.41 p. 333–347.

[203] M. Kaufmann and J. S. Moore, “An industrial strength theorem prover for a logic
based on common lisp,” IEEE Trans. Softw. Eng., vol. 23, no. 4, p. 203–213, Apr. 1997.
[Online]. Available: https://doi.org/10.1109/32.588534

[204] M. Kaufmann, J. S. Moore, and P. Manolios, Computer-Aided Reasoning: An Approach.
USA: Kluwer Academic Publishers, 2000.

[205] H. H. Nguyen and W.-N. Chin, “Enhancing program verification with lemmas,” in
Proceedings of the 20th International Conference on Computer Aided Verification,
ser. CAV ’08. Berlin, Heidelberg: Springer-Verlag, 2008. [Online]. Available:
https://doi.org/10.1007/978-3-540-70545-1_34 p. 355–369.

[206] N. Amin, K. R. M. Leino, and T. Rompf, “Computing with an smt solver,” in Tests
and Proofs, M. Seidl and N. Tillmann, Eds. Cham: Springer International Publishing,
2014, pp. 20–35.

[207] R. Leino and N. Polikarpova, “Verified calculations,” March 2013. [Online]. Available:
https://www.microsoft.com/en-us/research/publication/verified-calculations/

[208] H. R. Chamarthi, P. Dillinger, P. Manolios, and D. Vroon, “The acl2 sedan theorem
proving system,” in Proceedings of the 17th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems: Part of the Joint European
Conferences on Theory and Practice of Software, ser. TACAS’11/ETAPS’11. Berlin,
Heidelberg: Springer-Verlag, 2011, p. 291–295.

[209] G. Passmore, S. Cruanes, D. Ignatovich, D. Aitken, M. Bray, E. Kagan, K. Kanishev,
E. Maclean, and N. Mometto, “The imandra automated reasoning system (system
description),” in Automated Reasoning, N. Peltier and V. Sofronie-Stokkermans, Eds.
Cham: Springer International Publishing, 2020, pp. 464–471.

[210] K. R. M. Leino, “Automating induction with an smt solver,” in Proceedings of
the 13th International Conference on Verification, Model Checking, and Abstract
Interpretation, ser. VMCAI’12. Berlin, Heidelberg: Springer-Verlag, 2012. [Online].
Available: https://doi.org/10.1007/978-3-642-27940-9_21 p. 315–331.

[211] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F. Piessens,
“Verifast: A powerful, sound, predictable, fast verifier for c and java,” in Proceedings of
the Third International Conference on NASA Formal Methods, ser. NFM’11. Berlin,
Heidelberg: Springer-Verlag, 2011, p. 41–55.

[212] Q. L. Le, M. Tatsuta, J. Sun, and W.-N. Chin, “A decidable fragment in separation
logic with inductive predicates and arithmetic,” 07 2017, pp. 495–517.

214

https://doi.org/10.1109/SFCS.1980.41
https://doi.org/10.1109/32.588534
https://doi.org/10.1007/978-3-540-70545-1_34
https://www.microsoft.com/en-us/research/publication/verified-calculations/
https://doi.org/10.1007/978-3-642-27940-9_21

[213] A. Gurfinkel, “Program verification with constrained horn clauses (invited paper),”
in Computer Aided Verification, S. Shoham and Y. Vizel, Eds. Cham: Springer
International Publishing, 2022, pp. 19–29.

[214] A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas, “The seahorn verification
framework,” in Computer Aided Verification, D. Kroening and C. S. Păsăreanu, Eds.
Cham: Springer International Publishing, 2015, pp. 343–361.

[215] A. Komuravelli, A. Gurfinkel, and S. Chaki, “Smt-based model checking for recursive
programs,” in Computer Aided Verification, A. Biere and R. Bloem, Eds. Cham:
Springer International Publishing, 2014, pp. 17–34.

[216] E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti, “Solving horn clauses on
inductive data types without induction,” Theory and Practice of Logic Programming,
vol. 18, no. 3-4, p. 452–469, 2018.

[217] H. Govind V K, S. Shoham, and A. Gurfinkel, “Solving constrained horn clauses
modulo algebraic data types and recursive functions,” Proc. ACM Program. Lang.,
vol. 6, no. POPL, jan 2022. [Online]. Available: https://doi.org/10.1145/3498722

[218] A. Reynolds and J. C. Blanchette, “A decision procedure for (co)datatypes in smt
solvers,” J. Autom. Reason., vol. 58, no. 3, p. 341–362, mar 2017. [Online]. Available:
https://doi.org/10.1007/s10817-016-9372-6

[219] T. Rybina and A. Voronkov, “A decision procedure for term algebras with queues,”
ACM Trans. Comput. Logic, vol. 2, no. 2, p. 155–181, apr 2001. [Online]. Available:
https://doi.org/10.1145/371316.371494

[220] L. Wos, G. A. Robinson, and D. F. Carson, “Efficiency and completeness of the set of
support strategy in theorem proving,” J. ACM, vol. 12, no. 4, p. 536–541, oct 1965.
[Online]. Available: https://doi.org/10.1145/321296.321302

[221] F. Haifani, S. Tourret, and C. Weidenbach, “Generalized completeness for sos resolution
and its application to a new notion of relevance,” in Automated Deduction – CADE 28,
A. Platzer and G. Sutcliffe, Eds. Cham: Springer International Publishing, 2021, pp.
327–343.

[222] M. E. Stickel, “Automated deduction by theory resolution,” J. Autom. Reason., vol. 1,
no. 4, p. 333–355, Dec. 1985.

[223] H. Ganzinger and K. Korovin, “New directions in instantiation-based theorem proving,”
in Proceedings of the 18th Annual IEEE Symposium on Logic in Computer Science, ser.
LICS ’03. USA: IEEE Computer Society, 2003, p. 55.

[224] K. Korovin and C. Sticksel, “iprover-eq: An instantiation-based theorem prover with
equality,” in Automated Reasoning, J. Giesl and R. Hähnle, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 196–202.

215

https://doi.org/10.1145/3498722
https://doi.org/10.1007/s10817-016-9372-6
https://doi.org/10.1145/371316.371494
https://doi.org/10.1145/321296.321302

[225] S. Gulwani, “Automating string processing in spreadsheets using input-output
examples,” SIGPLAN Not., vol. 46, no. 1, p. 317–330, jan 2011. [Online]. Available:
https://doi.org/10.1145/1925844.1926423

[226] O. Polozov and S. Gulwani, “Flashmeta: A framework for inductive program
synthesis,” in Proceedings of the 2015 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications, ser. OOPSLA
2015. New York, NY, USA: Association for Computing Machinery, 2015. [Online].
Available: https://doi.org/10.1145/2814270.2814310 p. 107–126.

[227] E. Torlak and R. Bodik, “Growing solver-aided languages with rosette,” in
Proceedings of the 2013 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software, ser. Onward! 2013. New
York, NY, USA: Association for Computing Machinery, 2013. [Online]. Available:
https://doi.org/10.1145/2509578.2509586 p. 135–152.

[228] E. Torlak and R. Bodik, “A lightweight symbolic virtual machine for solver-aided host
languages,” SIGPLAN Not., vol. 49, no. 6, p. 530–541, June 2014. [Online]. Available:
https://doi.org/10.1145/2666356.2594340

[229] Z. Manna and R. Waldinger, “A deductive approach to program synthesis,” ACM
Trans. Program. Lang. Syst., vol. 2, no. 1, p. 90–121, Jan. 1980. [Online]. Available:
https://doi.org/10.1145/357084.357090

[230] J. Kim, Q. Hu, L. D’Antoni, and T. Reps, “Semantics-guided synthesis,”
Proc. ACM Program. Lang., vol. 5, no. POPL, jan 2021. [Online]. Available:
https://doi.org/10.1145/3434311

[231] L. D’Antoni, Q. Hu, J. Kim, and T. Reps, “Programmable program synthesis,” in
Computer Aided Verification, A. Silva and K. R. M. Leino, Eds. Cham: Springer
International Publishing, 2021, pp. 84–109.

[232] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko, “Invariant synthesis
for combined theories,” in Verification, Model Checking, and Abstract Interpretation,
B. Cook and A. Podelski, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
65.4364&rep=rep1&type=pdf pp. 378–394.

[233] S. Gulwani, S. Srivastava, and R. Venkatesan, “Program analysis as constraint solving,”
in Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language
Design and Implementation, Tucson, AZ, USA, June 7-13, 2008, 2008. [Online].
Available: http://doi.acm.org/10.1145/1375581.1375616 pp. 281–292.

[234] A. Gupta and A. Rybalchenko, “Invgen: An efficient invariant generator,” in Computer
Aided Verification, A. Bouajjani and O. Maler, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 634–640.

216

https://doi.org/10.1145/1925844.1926423
https://doi.org/10.1145/2814270.2814310
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/2666356.2594340
https://doi.org/10.1145/357084.357090
https://doi.org/10.1145/3434311
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.4364&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.4364&rep=rep1&type=pdf
http://doi.acm.org/10.1145/1375581.1375616

[235] M. A. Colón, S. Sankaranarayanan, and H. B. Sipma, “Linear invariant generation
using non-linear constraint solving,” in Computer Aided Verification, W. A. Hunt and
F. Somenzi, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 420–432.

[236] A. Gupta, R. Majumdar, and A. Rybalchenko, “From tests to proofs,” in Tools and Al-
gorithms for the Construction and Analysis of Systems, S. Kowalewski and A. Philippou,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 262–276.

[237] C. Flanagan and K. R. M. Leino, “Houdini, an annotation assistant for esc/java,” in
FME 2001: Formal Methods for Increasing Software Productivity, J. N. Oliveira and
P. Zave, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 500–517.

[238] M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin, “Quickly detecting
relevant program invariants,” in Proceedings of the 22nd International Conference on
Software Engineering, ser. ICSE ’00. New York, NY, USA: Association for Computing
Machinery, 2000. [Online]. Available: https://doi.org/10.1145/337180.337240 p.
449–458.

[239] M. M. Zloof, “Query by example,” in Proceedings of the May 19-22, 1975,
National Computer Conference and Exposition, ser. AFIPS ’75. New York,
NY, USA: Association for Computing Machinery, 1975. [Online]. Available:
https://doi.org/10.1145/1499949.1500034 p. 431–438.

[240] A. Thakkar, A. Naik, N. Sands, R. Alur, M. Naik, and M. Raghothaman,
“Example-guided synthesis of relational queries,” in Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation, ser. PLDI 2021. New York, NY, USA: Association for Computing
Machinery, 2021. [Online]. Available: https://doi.org/10.1145/3453483.3454098 p.
1110–1125.

[241] C. Wang, A. Cheung, and R. Bodik, “Synthesizing highly expressive sql queries from
input-output examples,” SIGPLAN Not., vol. 52, no. 6, p. 452–466, June 2017. [Online].
Available: https://doi.org/10.1145/3140587.3062365

[242] J. R. Koenig, O. Padon, N. Immerman, and A. Aiken, “First-order quantified separators,”
in Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI 2020. New York, NY, USA: Association for Computing
Machinery, 2020. [Online]. Available: https://doi.org/10.1145/3385412.3386018 p.
703–717.

[243] P. Krogmeier and P. Madhusudan, “Learning formulas in finite variable logics,”
Proc. ACM Program. Lang., vol. 6, no. POPL, Jan 2022. [Online]. Available:
https://doi.org/10.1145/3498671

[244] X. Wang, “An efficient programming-by-example framework,” Ph.D. dissertation, The
University of Texas at Austin, 2019.

217

https://doi.org/10.1145/337180.337240
https://doi.org/10.1145/1499949.1500034
https://doi.org/10.1145/3453483.3454098
https://doi.org/10.1145/3140587.3062365
https://doi.org/10.1145/3385412.3386018
https://doi.org/10.1145/3498671

[245] X. Wang, I. Dillig, and R. Singh, “Program synthesis using abstraction refinement,”
Proc. ACM Program. Lang., vol. 2, no. POPL, Dec. 2017. [Online]. Available:
https://doi.org/10.1145/3158151

[246] T. Hance, M. Heule, R. Martins, and B. Parno, “Finding invariants of
distributed systems: It’s a small (enough) world after all,” in 18th USENIX
Symposium on Networked Systems Design and Implementation (NSDI ’21).
Boston, MA, USA: USENIX Association, Apr. 2021. [Online]. Available:
https://www.usenix.org/conference/nsdi21/presentation/hance pp. 115–131.

[247] J. Yao, R. Tao, R. Gu, J. Nieh, S. Jana, and G. Ryan, “DistAI: Data-Driven automated
invariant learning for distributed protocols,” in 15th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 21). USENIX Association, July 2021.
[Online]. Available: https://www.usenix.org/conference/osdi21/presentation/yao pp.
405–421.

[248] G. Ryan, J. Wong, J. Yao, R. Gu, and S. Jana, “Cln2inv: Learning loop invariants with
continuous logic networks,” in International Conference on Learning Representations,
2020. [Online]. Available: https://openreview.net/forum?id=HJlfuTEtvB

[249] M. Fischer, M. Balunovic, D. Drachsler-Cohen, T. Gehr, C. Zhang, and M. Vechev,
“DL2: Training and querying neural networks with logic,” in Proceedings of the 36th
International Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR, 09–15 Jun 2019.
[Online]. Available: https://proceedings.mlr.press/v97/fischer19a.html pp. 1931–1941.

[250] M. Janota, J. Piepenbrock, and B. Piotrowski, “Towards Learning Quantifier
Instantiation in SMT,” in 25th International Conference on Theory and Applications
of Satisfiability Testing (SAT 2022), ser. Leibniz International Proceedings in
Informatics (LIPIcs), K. S. Meel and O. Strichman, Eds., vol. 236. Dagstuhl,
Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. [Online]. Available:
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2022.7 pp. 7:1–7:18.

[251] J. Jakubův, M. Janota, J. Piepenbrock, and J. Urban, “Machine learning for quantifier
selection in cvc5,” 2024. [Online]. Available: https://arxiv.org/abs/2408.14338

[252] A. Niemetz, M. Preiner, A. Reynolds, C. Barrett, and C. Tinelli, “Syntax-guided
quantifier instantiation,” in Tools and Algorithms for the Construction and Analysis of
Systems, J. F. Groote and K. G. Larsen, Eds. Cham: Springer International Publishing,
2021, pp. 145–163.

[253] R. Alur, P. Černý, P. Madhusudan, and W. Nam, “Synthesis of interface
specifications for java classes,” in Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser. POPL ’05. New
York, NY, USA: Association for Computing Machinery, 2005. [Online]. Available:
https://doi.org/10.1145/1040305.1040314 p. 98–109.

218

https://doi.org/10.1145/3158151
https://www.usenix.org/conference/nsdi21/presentation/hance
https://www.usenix.org/conference/osdi21/presentation/yao
https://openreview.net/forum?id=HJlfuTEtvB
https://proceedings.mlr.press/v97/fischer19a.html
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2022.7
https://arxiv.org/abs/2408.14338
https://doi.org/10.1145/1040305.1040314

[254] J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu, “Learning assumptions for
compositional verification,” in Proceedings of the 9th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, ser. TACAS’03. Berlin,
Heidelberg: Springer-Verlag, 2003, p. 331–346.

[255] A. Astorga, S. Saha, A. Dinkins, F. Wang, P. Madhusudan, and T. Xie, “Synthesizing
contracts correct modulo a test generator,” Proc. ACM Program. Lang., vol. 5, no.
OOPSLA, Oct. 2021. [Online]. Available: https://doi.org/10.1145/3485481

[256] P. Ezudheen, D. Neider, D. D’Souza, P. Garg, and P. Madhusudan, “Horn-ice learning
for synthesizing invariants and contracts,” Proc. ACM Program. Lang., vol. 2, no.
OOPSLA, Oct. 2018. [Online]. Available: https://doi.org/10.1145/3276501

[257] Z. Zhou, R. Dickerson, B. Delaware, and S. Jagannathan, “Data-driven abductive
inference of library specifications,” Proc. ACM Program. Lang., vol. 5, no. OOPSLA,
Oct. 2021. [Online]. Available: https://doi.org/10.1145/3485493

[258] G. Fedyukovich, Y. Zhang, and A. Gupta, “Syntax-guided termination analysis,” in
Computer Aided Verification, H. Chockler and G. Weissenbacher, Eds. Cham: Springer
International Publishing, 2018, pp. 124–143.

[259] Y. Sarita, A. Singh, S. Gomber, G. Singh, and M. Vishwanathan, “Syndicate:
Synergistic synthesis of ranking function and invariants for termination analysis,” 2024.
[Online]. Available: https://arxiv.org/abs/2404.05951

[260] C. Urban, A. Gurfinkel, and T. Kahsai, “Synthesizing ranking functions from bits
and pieces,” in Tools and Algorithms for the Construction and Analysis of Systems,
M. Chechik and J.-F. Raskin, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2016, pp. 54–70.

[261] J. Kim, L. D’Antoni, and T. Reps, “Unrealizability logic,” Proc. ACM Program. Lang.,
vol. 7, no. POPL, Jan. 2023. [Online]. Available: https://doi.org/10.1145/3571216

[262] S. Nagy, J. Kim, T. Reps, and L. D’Antoni, “Automating unrealizability logic:
Hoare-style proof synthesis for infinite sets of programs,” Proc. ACM Program. Lang.,
vol. 8, no. OOPSLA2, Oct. 2024. [Online]. Available: https://doi.org/10.1145/3689715

[263] D. Angluin, “Queries and concept learning,” Mach. Learn., vol. 2, no. 4, p. 319–342,
Apr. 1988. [Online]. Available: https://doi.org/10.1023/A:1022821128753

[264] S. Jha and S. A. Seshia, “A theory of formal synthesis via inductive
learning,” Acta Inf., vol. 54, no. 7, p. 693–726, Nov. 2017. [Online]. Available:
https://doi.org/10.1007/s00236-017-0294-5

[265] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided component-
based program synthesis,” in Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ser. ICSE ’10. New York,
NY, USA: Association for Computing Machinery, 2010. [Online]. Available:
https://doi.org/10.1145/1806799.1806833 p. 215–224.

219

https://doi.org/10.1145/3485481
https://doi.org/10.1145/3276501
https://doi.org/10.1145/3485493
https://arxiv.org/abs/2404.05951
https://doi.org/10.1145/3571216
https://doi.org/10.1145/3689715
https://doi.org/10.1023/A:1022821128753
https://doi.org/10.1007/s00236-017-0294-5
https://doi.org/10.1145/1806799.1806833

[266] R. P. Kurshan, Computer-Aided Verification of Coordinating Processes: The Automata-
Theoretic Approach. USA: Princeton University Press, 1994.

[267] R. P. Kurshan, “Model checking and abstraction,” in Abstraction, Reformulation, and
Approximation, S. Koenig and R. C. Holte, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002, pp. 1–17.

[268] C. Löding, P. Madhusudan, and D. Neider, “Abstract learning frameworks for synthesis,”
in Proceedings of the 22nd International Conference on Tools and Algorithms for the
Construction and Analysis of Systems - Volume 9636. Berlin, Heidelberg: Springer-
Verlag, 2016. [Online]. Available: https://doi.org/10.1007/978-3-662-49674-9_10 p.
167–185.

[269] A. Ireland and A. Bundy, “Productive use of failure in inductive proof,” in Automated
Mathematical Induction, H. Zhang, Ed. Dordrecht: Springer Netherlands, 1996.
[Online]. Available: https://doi.org/10.1007/978-94-009-1675-3_3 pp. 79–111.

[270] M. Johansson, L. Dixon, and A. Bundy, “Case-analysis for rippling and inductive
proof,” in Proceedings of the First International Conference on Interactive Theorem
Proving, ser. ITP’10. Berlin, Heidelberg: Springer-Verlag, 2010. [Online]. Available:
https://doi.org/10.1007/978-3-642-14052-5_21 p. 291–306.

[271] K. Claessen, M. Johansson, D. Rosén, and N. Smallbone, “Automating inductive proofs
using theory exploration,” in Automated Deduction – CADE-24, M. P. Bonacina, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 392–406.

[272] M. Hajdú, P. Hozzová, L. Kovács, J. Schoisswohl, and A. Voronkov, “Induction
with generalization in superposition reasoning,” in Intelligent Computer Mathematics:
13th International Conference, CICM 2020, Bertinoro, Italy, July 26–31, 2020,
Proceedings. Berlin, Heidelberg: Springer-Verlag, 2020. [Online]. Available:
https://doi.org/10.1007/978-3-030-53518-6_8 p. 123–137.

[273] S. Cruanes, “Superposition with structural induction,” in Frontiers of Combining
Systems, C. Dixon and M. Finger, Eds. Cham: Springer International Publishing,
2017, pp. 172–188.

[274] H. Unno, S. Torii, and H. Sakamoto, “Automating induction for solving horn clauses,”
in Computer Aided Verification, R. Majumdar and V. Kunčak, Eds. Cham: Springer
International Publishing, 2017, pp. 571–591.

[275] D.-H. Chu, J. Jaffar, and M.-T. Trinh, “Automatic induction proofs of data-structures
in imperative programs,” in Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’15. New
York, NY, USA: Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2737924.2737984 p. 457–466.

220

https://doi.org/10.1007/978-3-662-49674-9_10
https://doi.org/10.1007/978-94-009-1675-3_3
https://doi.org/10.1007/978-3-642-14052-5_21
https://doi.org/10.1007/978-3-030-53518-6_8
https://doi.org/10.1145/2737924.2737984

[276] H. Zhang, A. Gupta, and S. Malik, “Syntax-guided synthesis for lemma generation in
hardware model checking,” in Verification, Model Checking, and Abstract Interpretation
- 22nd International Conference, VMCAI 2021, Copenhagen, Denmark, January
17-19, 2021, Proceedings, ser. Lecture Notes in Computer Science, F. Henglein,
S. Shoham, and Y. Vizel, Eds., vol. 12597. Springer, 2021. [Online]. Available:
https://doi.org/10.1007/978-3-030-67067-2_15 pp. 325–349.

[277] W. Sonnex, S. Drossopoulou, and S. Eisenbach, “Zeno: An automated prover for
properties of recursive data structures,” in Tools and Algorithms for the Construction
and Analysis of Systems, C. Flanagan and B. König, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 407–421.

[278] M. Hajdú, P. Hozzová, L. Kovács, J. Schoisswohl, and A. Voronkov, “Induction with
generalization in superposition reasoning,” in Intelligent Computer Mathematics - 13th
International Conference, CICM 2020, Bertinoro, Italy, July 26-31, 2020, Proceedings,
ser. Lecture Notes in Computer Science, C. Benzmüller and B. R. Miller, Eds., vol. 12236.
Springer, 2020. [Online]. Available: https://doi.org/10.1007/978-3-030-53518-6_8 pp.
123–137.

[279] K. Claessen, M. Johansson, D. Rosén, and N. Smallbone, “Automating inductive proofs
using theory exploration,” in Automated Deduction - CADE-24 - 24th International
Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013.
Proceedings, ser. Lecture Notes in Computer Science, M. P. Bonacina, Ed., vol. 7898.
Springer, 2013. [Online]. Available: https://doi.org/10.1007/978-3-642-38574-2_27 pp.
392–406.

[280] M. Johansson, “Lemma discovery for induction - A survey,” in Intelligent Computer
Mathematics - 12th International Conference, CICM 2019, Prague, Czech Republic,
July 8-12, 2019, Proceedings, ser. Lecture Notes in Computer Science, C. Kaliszyk,
E. C. Brady, A. Kohlhase, and C. S. Coen, Eds., vol. 11617. Springer, 2019. [Online].
Available: https://doi.org/10.1007/978-3-030-23250-4_9 pp. 125–139.

[281] A. Sivaraman, A. Sanchez-Stern, B. Chen, S. Lerner, and T. Millstein, “Data-driven
lemma synthesis for interactive proofs,” Proc. ACM Program. Lang., vol. 6, no.
OOPSLA2, oct 2022. [Online]. Available: https://doi.org/10.1145/3563306

[282] C. Kurashige, R. Ji, A. Giridharan, M. Barbone, D. Noor, S. Itzhaky, R. Jhala, and
N. Polikarpova, “Cclemma: E-graph guided lemma discovery for inductive equational
proofs,” Proc. ACM Program. Lang., vol. 8, no. ICFP, Aug. 2024. [Online]. Available:
https://doi.org/10.1145/3674653

[283] D. Neider, P. Garg, P. Madhusudan, S. Saha, and D. Park, “Invariant synthesis for
incomplete verification engines,” in Tools and Algorithms for the Construction and
Analysis of Systems, D. Beyer and M. Huisman, Eds. Cham: Springer International
Publishing, 2018, pp. 232–250.

221

https://doi.org/10.1007/978-3-030-67067-2_15
https://doi.org/10.1007/978-3-030-53518-6_8
https://doi.org/10.1007/978-3-642-38574-2_27
https://doi.org/10.1007/978-3-030-23250-4_9
https://doi.org/10.1145/3563306
https://doi.org/10.1145/3674653

[284] A. Tarski, “Ein beitrag zur axiomatik der abelschen gruppen,” Fundamenta Mathemati-
cae, vol. 30, no. 11, p. 253–256, 1938.

[285] A. Rezus, Witness Theory: Notes on λ-calculus and Logic. London, UK: College
Publications, 03 2020.

[286] J. Łukasiewicz and A. Tarski, Untersuchungen über den Aussagenkalkül. Warsaw,
Poland: Comptes Rendus des Séances de la Sociélé des Scierices et des Lettres des
Varsovie Classe III, 1930, vol. 23.

[287] K. Kunen, “Single axioms for groups,” Journal of Automated Reasoning, vol. 9, no. 3,
pp. 291–308, Dec 1992. [Online]. Available: https://doi.org/10.1007/BF00245293

[288] W. W. Mccune, “Single axioms for groups and abelian groups with various operations,”
Journal of Automated Reasoning, vol. 10, pp. 1–13, 1993.

[289] W. McCune and A. D. Sands, “Computer and human reasoning: Single implicative
axioms for groups and for abelian groups,” The American Mathematical Monthly, vol.
103, no. 10, pp. 888–892, 1996. [Online]. Available: http://www.jstor.org/stable/2974613

[290] W. McCune, R. Veroff, B. Fitelson, K. Harris, A. Feist, and L. Wos, “Short single
axioms for boolean algebra,” Journal of Automated Reasoning, vol. 29, no. 1, pp. 1–16,
Mar 2002. [Online]. Available: https://doi.org/10.1023/A:1020542009983

[291] W. McCune and R. Padmanabhan, “Single identities for lattice theory and for weakly
associative lattices,” Algebra Universalis, vol. 36, pp. 436–449, 12 1996.

[292] W. McCune, R. Padmanabhan, M. A. Rose, and R. Veroff, “Automated discovery of
single axioms for ortholattices,” algebra universalis, vol. 52, no. 4, pp. 541–549, Feb
2005. [Online]. Available: https://doi.org/10.1007/s00012-004-1902-0

[293] W. McCune, R. Padmanabhan, and R. Veroff, “Yet another single law for lattices,”
algebra universalis, vol. 50, no. 2, pp. 165–169, Dec 2003. [Online]. Available:
https://doi.org/10.1007/s00012-003-1832-2

[294] B. Neumann, “Another single law for groups,” Bulletin of the Australian Mathematical
Society, vol. 23, no. 1, p. 81–102, 1981.

[295] R. Padmanabhan, “On single equational-axiom systems for abelian groups,” Journal of
the Australian Mathematical Society, vol. 9, no. 1-2, p. 143–152, 1969.

[296] I. L. Valbuena and M. Johansson, “Conditional lemma discovery and recursion
induction in hipster,” Electronic Communications of the EASST, vol. 72, pp. 1–15,
2015. [Online]. Available: https://doi.org/10.14279/tuj.eceasst.72.1009

[297] M. Johansson, “Automated theory exploration for interactive theorem proving:,” in
Interactive Theorem Proving, M. Ayala-Rincón and C. A. Muñoz, Eds. Cham: Springer
International Publishing, 2017, pp. 1–11.

222

https://doi.org/10.1007/BF00245293
http://www.jstor.org/stable/2974613
https://doi.org/10.1023/A:1020542009983
https://doi.org/10.1007/s00012-004-1902-0
https://doi.org/10.1007/s00012-003-1832-2
https://doi.org/10.14279/tuj.eceasst.72.1009

[298] M. Johansson, D. Rosén, N. Smallbone, and K. Claessen, “Hipster: Integrating theory
exploration in a proof assistant,” in Intelligent Computer Mathematics, S. M. Watt, J. H.
Davenport, A. P. Sexton, P. Sojka, and J. Urban, Eds. Cham: Springer International
Publishing, 2014, pp. 108–122.

[299] B. Buchberger, A. Crǎciun, T. Jebelean, L. Kovács, T. Kutsia, K. Nakagawa, F. Piroi,
N. Popov, J. Robu, M. Rosenkranz, and W. Windsteiger, “Theorema: Towards
computer-aided mathematical theory exploration,” Journal of Applied Logic, vol. 4,
no. 4, pp. 470–504, 2006. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1570868305000716

[300] I. Drâmnesc, T. Jebelean, and S. Stratulat, “Theory exploration of binary trees,” in 2015
IEEE 13th International Symposium on Intelligent Systems and Informatics (SISY).
Subotica, Serbia: IEEE, 2015, pp. 139–144.

[301] I. Drămnesc and T. Jebelean, “Theory exploration in theorema: Case study on lists,”
in 2012 7th IEEE International Symposium on Applied Computational Intelligence and
Informatics (SACI). Timisoara, Romania: IEEE, 2012, pp. 421–426.

[302] R. L. Mccasland, A. Bundy, and P. F. Smith, “Mathsaid: Automated mathematical
theory exploration,” Applied Intelligence, vol. 47, no. 3, p. 585–606, oct 2017. [Online].
Available: https://doi.org/10.1007/s10489-017-0954-8

[303] E. Singher and S. Itzhaky, “Theory exploration powered by deductive synthesis,” in
Computer Aided Verification, A. Silva and K. R. M. Leino, Eds. Cham: Springer
International Publishing, 2021. [Online]. Available: https://link.springer.com/chapter/
10.1007/978-3-030-81688-9_6 pp. 125–148.

[304] A. Pal, B. Saiki, R. Tjoa, C. Richey, A. Zhu, O. Flatt, M. Willsey, Z. Tatlock,
and C. Nandi, “Equality saturation theory exploration à la carte,” Proc.
ACM Program. Lang., vol. 7, no. OOPSLA2, Oct. 2023. [Online]. Available:
https://doi.org/10.1145/3622834

[305] G. Poesia, D. Broman, N. Haber, and N. D. Goodman, “Learning formal mathematics
from intrinsic motivation,” arXiv preprint arXiv:2407.00695, 2024.

[306] A. Grayeli, A. Sehgal, O. Costilla-Reyes, M. Cranmer, and S. Chaudhuri,
“Symbolic regression with a learned concept library,” 2024. [Online]. Available:
https://arxiv.org/abs/2409.09359

[307] C. Singh, J. X. Morris, J. Aneja, A. M. Rush, and J. Gao, “Explaining patterns in
data with language models via interpretable autoprompting,” 2022. [Online]. Available:
https://arxiv.org/abs/2210.01848

[308] P. Langley, “Data-driven discovery of physical laws,” Cognitive Science, vol. 5, no. 1,
pp. 31–54, 1981. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0364021381800250

223

https://www.sciencedirect.com/science/article/pii/S1570868305000716
https://www.sciencedirect.com/science/article/pii/S1570868305000716
https://doi.org/10.1007/s10489-017-0954-8
https://link.springer.com/chapter/10.1007/978-3-030-81688-9_6
https://link.springer.com/chapter/10.1007/978-3-030-81688-9_6
https://doi.org/10.1145/3622834
https://arxiv.org/abs/2409.09359
https://arxiv.org/abs/2210.01848
https://www.sciencedirect.com/science/article/pii/S0364021381800250
https://www.sciencedirect.com/science/article/pii/S0364021381800250

[309] T. Wu and M. Tegmark, “Toward an artificial intelligence physicist for unsupervised
learning.” Physical review. E, vol. 100 3-1, p. 033311, 2019.

[310] J. C. Reynolds, “Definitional interpreters for higher-order programming languages,”
in Proceedings of the ACM Annual Conference - Volume 2, ser. ACM ’72. New
York, NY, USA: Association for Computing Machinery, 1972. [Online]. Available:
https://doi.org/10.1145/800194.805852 p. 717–740.

[311] N. Lehmann, A. T. Geller, N. Vazou, and R. Jhala, “Flux: Liquid types for
rust,” Proc. ACM Program. Lang., vol. 7, no. PLDI, June 2023. [Online]. Available:
https://doi.org/10.1145/3591283

[312] C. Enea, M. Sighireanu, and Z. Wu, “On automated lemma generation for separation
logic with inductive definitions,” in Automated Technology for Verification and Analysis,
B. Finkbeiner, G. Pu, and L. Zhang, Eds. Cham: Springer International Publishing,
2015, pp. 80–96.

[313] J. C. Blanchette and K. Claessen, “Generating counterexamples for structural inductions
by exploiting nonstandard models,” in Logic for Programming, Artificial Intelligence,
and Reasoning, C. G. Fermüller and A. Voronkov, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 127–141.

[314] N. Elad, O. Padon, and S. Shoham, “An infinite needle in a finite haystack: Finding
infinite counter-models in deductive verification,” Proc. ACM Program. Lang., vol. 8,
no. POPL, Jan. 2024. [Online]. Available: https://doi.org/10.1145/3632875

[315] A. Lattuada, T. Hance, C. Cho, M. Brun, I. Subasinghe, Y. Zhou, J. Howell,
B. Parno, and C. Hawblitzel, “Verus: Verifying rust programs using linear ghost types,”
Proc. ACM Program. Lang., vol. 7, no. OOPSLA1, apr 2023. [Online]. Available:
https://doi.org/10.1145/3586037

[316] Adithya Murali and Madhusudan Parthasarathy, “Automated Datastructure
Verification using Unfoldings and SMT Solving: Foundations and FO-Completeness
(POPL 2024 - TutorialFest) - POPL 2024,” publisher: POPL 2024. [On-
line]. Available: https://popl24.sigplan.org/details/POPL-2024-tutorialfest/10/
-Automated-Datastructure-Verification-using-Unfoldings-and-SMT-Solving-Foundations-a

[317] A. Q. Jiang, S. Welleck, J. P. Zhou, T. Lacroix, J. Liu, W. Li, M. Jamnik, G. Lample,
and Y. Wu, “Draft, sketch, and prove: Guiding formal theorem provers with informal
proofs,” in The Eleventh International Conference on Learning Representations, 2023.
[Online]. Available: https://openreview.net/forum?id=SMa9EAovKMC

[318] K. Yang, A. M. Swope, A. Gu, R. Chalamala, P. Song, S. Yu, S. Godil, R. Prenger,
and A. Anandkumar, “Leandojo: theorem proving with retrieval-augmented language
models,” in Proceedings of the 37th International Conference on Neural Information
Processing Systems, ser. NIPS ’23. Red Hook, NY, USA: Curran Associates Inc., 2024.

224

https://doi.org/10.1145/800194.805852
https://doi.org/10.1145/3591283
https://doi.org/10.1145/3632875
https://doi.org/10.1145/3586037
https://popl24.sigplan.org/details/POPL-2024-tutorialfest/10/-Automated-Datastructure-Verification-using-Unfoldings-and-SMT-Solving-Foundations-a
https://popl24.sigplan.org/details/POPL-2024-tutorialfest/10/-Automated-Datastructure-Verification-using-Unfoldings-and-SMT-Solving-Foundations-a
https://openreview.net/forum?id=SMa9EAovKMC

[319] H. Wu, C. Barrett, and N. Narodytska, “Lemur: Integrating large language
models in automated program verification,” in The Twelfth International
Conference on Learning Representations, 2024. [Online]. Available: https:
//openreview.net/forum?id=Q3YaCghZNt

[320] A. Kamath, A. Senthilnathan, S. Chakraborty, P. Deligiannis, S. Lahiri,
A. Lal, A. Rastogi, S. Roy, and R. Sharma, “Leveraging llms for program
verification,” in Formal Methods in Computer-Aided Design (FMCAD), October
2024. [Online]. Available: https://www.microsoft.com/en-us/research/publication/
finding-inductive-loop-invariants-using-large-language-models/

[321] E. Lohn and S. Welleck, “minicodeprops: a minimal benchmark for proving code
properties,” 2024. [Online]. Available: https://arxiv.org/abs/2406.11915

[322] S. Klabnik and C. Nichols, The Rust Programming Language. USA: No Starch Press,
2018.

[323] N. D. Matsakis and F. S. Klock, “The rust language,” Ada Lett., vol. 34, no. 3, p.
103–104, Oct. 2014. [Online]. Available: https://doi.org/10.1145/2692956.2663188

[324] C. Enea and E. Koskinen, “Scenario-based proofs for concurrent objects,” Proc.
ACM Program. Lang., vol. 8, no. OOPSLA1, Apr. 2024. [Online]. Available:
https://doi.org/10.1145/3649857

[325] C. Cho, Y. Zhou, J. Bosamiya, and B. Parno, “A framework for debugging auto-
mated program verification proofs via proof actions,” in Computer Aided Verification,
A. Gurfinkel and V. Ganesh, Eds. Cham: Springer Nature Switzerland, 2024, pp.
348–361.

[326] P. Krogmeier and P. Madhusudan, “Languages with decidable learning: A
meta-theorem,” Proc. ACM Program. Lang., vol. 7, no. OOPSLA1, Apr. 2023. [Online].
Available: https://doi.org/10.1145/3586032

[327] S. Heule, E. Schkufza, R. Sharma, and A. Aiken, “Stratified synthesis: Automatically
learning the x86-64 instruction set,” in Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser. PLDI ’16.
New York, NY, USA: Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/2908080.2908121 p. 237–250.

[328] S. Dinesh, G. Garrett-Grossman, and C. W. Fletcher, “Synthct: Towards portable
constant-time code,” in 29th Annual Network and Distributed System Security Sympo-
sium (NDSS ’22). San Diego, CA, USA: The Internet Society, 2022, pp. 1–18.

[329] Y. Wang, I. Dillig, S. K. Lahiri, and W. R. Cook, “Verifying equivalence of
database-driven applications,” Proc. ACM Program. Lang., vol. 2, no. POPL, dec 2018.
[Online]. Available: https://doi.org/10.1145/3158144

225

https://openreview.net/forum?id=Q3YaCghZNt
https://openreview.net/forum?id=Q3YaCghZNt
https://www.microsoft.com/en-us/research/publication/finding-inductive-loop-invariants-using-large-language-models/
https://www.microsoft.com/en-us/research/publication/finding-inductive-loop-invariants-using-large-language-models/
https://arxiv.org/abs/2406.11915
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1145/3649857
https://doi.org/10.1145/3586032
https://doi.org/10.1145/2908080.2908121
https://doi.org/10.1145/3158144

[330] C. Smith, G. Ferns, and A. Albarghouthi, “Discovering relational specifications,” in
Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2017. New York, NY, USA: Association for Computing Machinery,
2017. [Online]. Available: https://doi.org/10.1145/3106237.3106279 p. 616–626.

[331] A. Fariha, A. Tiwari, A. Radhakrishna, S. Gulwani, and A. Meliou, “Conformance
constraint discovery: Measuring trust in data-driven systems,” in Proceedings of the
2021 International Conference on Management of Data, ser. SIGMOD ’21. New
York, NY, USA: Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3448016.3452795 p. 499–512.

[332] A. Fariha, A. Tiwari, A. Meliou, A. Radhakrishna, and S. Gulwani, “Coco: Interactive
exploration of conformance constraints for data understanding and data cleaning,”
in Proceedings of the 2021 International Conference on Management of Data, ser.
SIGMOD ’21. New York, NY, USA: Association for Computing Machinery, 2021.
[Online]. Available: https://doi.org/10.1145/3448016.3452750 p. 2706–2710.

[333] A. Murali, A. Sehgal, P. Krogmeier, and P. Madhusudan, “Composing neural learning
and symbolic reasoning with an application to visual discrimination,” in Proceedings of
the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22,
L. D. Raedt, Ed. International Joint Conferences on Artificial Intelligence Organization,
7 2022, main Track. [Online]. Available: https://doi.org/10.24963/ijcai.2022/466 pp.
3358–3365.

[334] L. Dunlap, Y. Zhang, X. Wang, R. Zhong, T. Darrell, J. Steinhardt, J. E. Gonzalez,
and S. Yeung-Levy, “Describing differences in image sets with natural language,” in
Conference on Computer Vision and Pattern Recognition (CVPR), 2024.

226

https://doi.org/10.1145/3106237.3106279
https://doi.org/10.1145/3448016.3452795
https://doi.org/10.1145/3448016.3452750
https://doi.org/10.24963/ijcai.2022/466

	Chapter 1 Introduction
	Chapter 2 Complete FO Reasoning for Properties of Functional Programs
	Introduction
	Overview
	Insertion and Sortedness
	Insertion Preserves Sortedness
	Membership in a Sorted List

	Preliminaries
	Syntax and Semantics
	The Standard Model
	Combinations of Theories, Nonstandard models, and Rogue Nonstandard Models
	Validity under Defined Functions

	A FLUID Logic
	Completeness of Definition Unfolding and Quantifier-Free Reasoning
	UQFR Algorithm
	Soundness and Completeness of UQFR under Combined Theories

	FLUID reasoning in Liquid Haskell
	Proof by Instantiation
	Proof by Induction
	Proof by Lemmas
	Rogue Nonstandard Models in Proofs about Data Structures

	FLUID Reasoning and Reasoning in Leon
	Expressiveness Results on the FLUID Fragment

	Chapter 3 Model-Guided Synthesis of Inductive Lemmas for FO+lfp
	Introduction
	Preliminaries and Problem Definition
	First-Order Logic over Theory-Constrained Background Sorts
	First-Order Logic with Recursive Definitions (FO+lfp)
	The Inductive Lemma Synthesis Problem for Proving FO+lfp Formulas
	Background: First-Order Validity using Systematic Quantifier Instantiation

	The FOSSIL Algorithm for Sequential Lemma Synthesis
	Components of FOSSIL
	Counterexamples
	The FOSSIL Algorithm
	Running Example: List Segments

	Synthesis and Counterexample Generation Engines
	Synthesis Engine
	Counterexample Generators

	Soundness and Relative Completeness
	Implementation and Evaluation
	Implementation
	Research Questions
	Benchmarks
	RQ1: Effectiveness of FOSSIL in Proving Theorems
	RQ2: Comparison to Synthesis without Use of Counterexamples
	RQ3: Comparison with CVC4 SyGuS Solver
	Comparison with ADT/Separation Logic Tools

	Chapter 4 Predictable Verification using Intrinsic Definitions
	Introduction
	Intrinsic Definitions of Data Structures
	Data Structures
	Intrinsic Definitions of Data Structures

	Preliminaries: Programs, Correctness, and Ghost Code
	Programs, Contracts, and Correctness
	Ghost Code

	Fix What You Break (FWYB) Verification Methodology
	Stage 1: Removing Existential Quantification over Monadic Maps using Ghost Code
	Stage 2: Relaxing Universal Quantification using Broken Sets
	Stage 3: Eliminating the Universal Quantifier for Well-Behaved Programs
	Generating Quantifier-Free Verification Conditions

	Soundness of FWYB
	Programming in the FWYB Methodology
	Data Structure Definition
	Constructing Provably Correct Impact Sets for Mutations
	Language Macros that Ensure Well-Behaved Programs
	Verifying Insertion into a Sorted List

	Illustrative Data Structures and Verification
	Right-Rotation of a BST
	Reversing a Sorted List
	Circular Lists
	Merging Sorted Lists
	Overlaid Data Structure of List and BST

	Implementation and Evaluation
	Implementation Strategy of IDS and FWYB in Boogie
	Benchmarks
	Evaluation

	Chapter 5 Synthesizing Axiomatizations using Logic Learning
	Introduction
	Learning-based Axiom Synthesis (LAS) Framework
	Complete Axiomatizations
	Instantiations of LAS

	Example: Axiomatizing Equivalence Relations
	The Axiom Synthesis Problem
	Preliminaries
	A Model-Theoretic Formulation of Axiom Synthesis

	Learning-Based Axiom Synthesis Framework
	Components of the LAS Framework
	The Core LAS Algorithm
	Realizing the Learner using an SMT Solver

	Axiomatizing Classes of Frames in Modal Logic
	Modal Logic and Correspondence Theory
	Instantiating the LAS Framework for Modal Logic
	Implementation and Evaluation

	Axiomatizing Languages with Kleene Star
	Language Models
	Instantiating the LAS Framework for Language Models
	Implementation and Evaluation

	Chapter 6 Related Work and Discussion
	Heap Verification: Logics and Reasoning
	Reasoning about Unbounded Structures: Heuristics and Creative Help
	Identifying Limitations of Heuristics
	Bridging Creativity Gaps using Logic Learning

	Chapter 7 Conclusion and Future Work
	Better Frameworks for Automated Verification
	Beyond Verification

	References

