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The overarching focus of my research is to democratize software verification, enabling program-
mers who are not verification experts to verify their code. My thesis work advances this vision by
replacing human creativity currently required in software verification using data-driven logic learning.
I combine ideas from programming languages, formal methods, and (symbolic) machine learning.

The desire for bug-free software is as old as computer science. However, we still do not have tools that are powerful
enough to ensure software reliability in practice. With the privacy of personal data [14], financial security [15], and
physical safety [16, 17] on the line, software testing is not enough. Formal Verification shows a way forward, by
describing the desired behavior of a piece of software mathematically and writing a computer-checkable proof that
the code meets the given specification.

Automation is critical to the democratization of verification, i.e., enabling programmers who are not verifi-
cation experts to verify their software. However, automated verification is at an impasse, both in terms of technical
advances as well as practical adoption. This is because automation for software verification requires crucial
technical intervention from verification experts to work. The requirement for key technical help prevents
democratization— very few engineers know the internals of verification tools, and normal programmers are unable
to use them. Indeed, existing successes of automated verification (e.g., device drivers [18], operating system ker-
nels [19], or fault-tolerant distributed systems for the cloud [20, 21]) have required significant verification expertise.
Furthermore, these technical interventions are challenging and frustrating to provide even for experts! Early in my
Ph.D., I set out to build a verified blockchain [1]1 and encountered this frustration firsthand, and it has motivated
my research in removing these obstacles.
My thesis argues that existing automated reasoning paradigms practice a two-step approach:
(1) A human, typically an expert, uses their creativity ( ) to formally state their high-level
arguments about a system’s behavior or correctness, and
(2) An automated reasoning engine mechanically ( ) verifies the stated arguments.

However, this approach is complex, tedious, and makes automated reasoning inaccessible.
I call this seemingly inescapable requirement for expert ingenuity the creativity gap in automated reasoning.

My research identifies the precise creativity gaps in automated reasoning
and bridges these gaps using logic learning.

The two-step ( ) + ( ) view of reasoning paradigms is a powerful lens that applies to many reasoning problems.
For example, in program verification, the expert breaks down the problem into modular specifications in the form of
contracts for individual methods and loop invariants, and then an automated engine effectively verifies the methods.
Another example is theorem proving, where the expert breaks down a theorem into intermediate lemmas such that
SMT solvers [22, 23] (which are automated logic engines) can verify that each step follows from the previous steps.
This view even has applications beyond Programming Languages. For example, in mathematical and scientific
reasoning, humans come up with axioms or laws to characterize a domain and then reason using those laws. As AI
moves towards tackling these fields, automatically discovering such laws is a creative task that we must conquer.

My research offers two key insights:

I. Identifying Creativity Gaps: Practical problems require expressive reasoning domains which are typically
incomplete (i.e., can never be fully automated in theory), forcing automation to rely on heuristics. When
the heuristics get stuck or simply fail, experts are forced to turn to creativity. We need to understand the
shortcomings of these heuristics to identify how to automate human help. My work here contributes a set
of foundational theoretical tools and results that precisely characterize the reasoning power of several

1Citations appearing in blue refer to my publications.
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popular heuristics used in verification [OOPSLA’23: 2, OOPSLA’22: 3, POPL’20: 4]. These are the first results
that characterize the exact role of human intervention in using automated reasoning for software verification.
My work has been accepted to be presented as a tutorial at POPL 2024 [5].
I have also used these insights to fundamentally re-think the field. My recent work submitted to PLDI 2024 [6]
develops new verification paradigms with the goal of democratizing verification by providing reliable au-
tomation with minimal and simple human help.

II. Bridging Creativity Gaps using Learning: The second insight is that the solution to automating the
creativity gap lies in learning-based synthesis. My thesis work focuses in particular on bridging the creativity
gaps in automated reasoning using data-driven logic learning, namely, learning logical formulas from exam-
ples [OOPSLA ’22: 3, OOPSLA ’22: 7, POPL’20: 4, IJCAI’22: 8]. My work tackles complex logics containing
quantification and complex example data in the form of first-order models. This is a challenging open problem,
and my work here contributes new learning frameworks and algorithms that are applicable to many creative
tasks. I have built open-source tools that implement these advances.

Apart from my thesis research, I have worked broadly on program verification and program synthesis. My work
covers the spectrum from theory to practice and has consistently appeared at the most competitive venues, including
POPL [4], OOPSLA [2, 3, 7], CAV [9], ESOP [10], FMCAD [1], TOPLAS [11], and IJCAI [8].

Thesis Research

Problem Domain Creative Task
Program Verification

(with recursive definitions) Inductive Lemmas [A,B]
Program Verification

(with intrinsic specifications) Ghost Map Updates [C,*]

Theorem Proving Axioms [D]

Verification with large libraries Library Specifications [*]
* Future Work

The table on the right provides an overview of the
various creative tasks that my thesis work automates
using logic learning. Asterisks link to ongoing efforts
that I describe in the section on future work.

(A) Identifying Creativity Gaps in Program
Verification Practical verification problems in-
volve complex specifications that are stated in incom-
plete logics. This means that no technique can prove
all valid programs, so developers of verification tools
often end up building a set of complex and opaque
heuristics. Consequently, when the heuristics fail, users do not know why they fail. This is a source of great
frustration even for expert users.

Motivated by this observation, I study a popular heuristic for verifying functional programs called
USMT: Unfolding definitions followed by SMT solving. This is a very effective heuristic that has been used in
many verification tools [24, 25, 26] over the years. However, despite its efficacy, USMT fails on very simple problems
and users did not know why— until now.

In our work [2] we develop a new logic called FLUID (First-Order Logic Under Inductive Definitions) which
provides a sound abstraction of the verification problems posed by users. We find that USMT is complete for
FLUID, i.e., USMT works precisely when the FLUID abstraction is provable, and fails when the abstraction is
too weak. Further, we show that when USMT fails, there always exist spurious counterexamples to the FLUID
abstraction called rogue nonstandard models. This shows that the role of human creative help ( ) in aiding tools
is to provide hints (in the form of inductive lemmas) that eliminate such spurious counterexamples.

This work goes from practice to theory. It is one of only two such results [2] [27] in the literature to precisely
characterize heuristics used in verification. On the practical side, our result informs the design of verification
tools that deploy predictable techniques and provide precise, useful feedback to the user when they fail. I am
working with developers of verification tools to improve their design using the insights from this work.

(B) Filling Creativity Gaps in Program Verification The second major thrust of my thesis is the automation
of human creative effort in verification. In this direction, I address the creativity gap that arises when reasoning
using USMT in the context of imperative programs over dynamic heaps [3]. Verification problems in this setting
are stated in a very general and powerful logic: First-Order Logic with Recursive Definitions. A previous result [27]
on identifying creativity gaps for this problem shows that the role of human help is precisely the creative
task of providing inductive lemmas that bridge the gaps left by the heuristic. In other words, the verification
problem splits into two precise pieces: (1) creatively ( ) come up with inductive lemmas such that (2) USMT

2



can mechanically ( ) verify the given program using the lemmas. This motivated me to investigate automating
inductive lemma synthesis.

We develop in the resulting work [3] a new data-driven logic learning framework called FOSSIL (a First-
Order Solver with Synthesis of Inductive Lemmas) that is based on learning complex quantified lemmas from novel
counterexample first-order models. This work is a landmark that contributes many firsts: we formalize
for the first time the idea of counterexample models, create several new kinds of counterexamples beyond the simple
positive and negative examples known in the literature, and show how to design frameworks for doing what we
call ‘Model-Guided Synthesis’— a new and powerful synthesis approach. Unlike synthesis problems in literature,
the salient feature of this creative task is that the synthesis problem has no logical specification! To handle
this challenge our technique uses several different carefully designed algorithmic components in concert with a logic
learner to gradually elicit valid and useful lemmas. My collaborators and I are currently using this framework to
build a practical tool [13] for verifying heap manipulating programs where verification is completely automated.

(C) Rethinking Verification Paradigms: Predictable Verification using Intrinsic Specifications My
study into the opaqueness of verification tools motivated me to rethink the problem through the lens of combining
creativity ( ) and mechanical reasoning ( ). In recent work [6] I define the new problem of predictable
verification seeking a verification paradigm such that (1) the user is asked to provide upfront a fixed set of
annotations independent of the underlying verification mechanism, and (2) the verification, given the annotations,
can be completely automated. In other words, we want no more frustrating proof engineering (e.g., inductive
lemmas, instantiation triggers, etc.)! This would yield a framework where the user simply expresses arguments for
the correctness of their programs at a high level, and then an automated engine checks their work effectively.

We create the Intrinsic Specifications (IS) paradigm for predictable verification based on two innovations.
First, where specifications generally involve recursively defined functions that compute over unbounded regions
of the program state, we formulate novel intrinsic specifications that talk about program states locally without
using recursive definitions. Intuitively, an intrinsic specification says what a program state looks like when one is
standing ‘inside’ it, whereas recursive definitions offer a ‘global’ view of the state. The second innovation is a new
verification methodology that allows the user to argue the correctness of intrinsically defined specifications by
augmenting the program with ghost code (code which does not execute but provides a proof of the analyzed program
in a computational way). Verifying programs augmented with ghost code against intrinsic specifications is in fact
decidable! It can therefore be automated very effectively using SMT solvers [22, 23].

IS provides users a simple, programmatic technique and offers a predictable verification experience. We used IS
to verify 50 programs over complex data structures such as overlaid binary search trees used in a Linux I/O
scheduler. I am actively working on using IS to verify programs that manipulate concurrent data structures.

(D) Filling Creativity Gaps by Discovering Laws One of the most beautiful aspects of human intelligence
is our ability to formulate abstract rules for navigating new domains. This is especially prominent in
mathematical and scientific inquiry, where the scientist may even understand the phenomenon at hand precisely,
but they want to analyze it at a higher level of abstraction and draw interesting conclusions by operating within
the abstraction. For example, doctors have a detailed understanding of the human lung and its dynamics, but
when analyzing X-rays of lungs they talk about ‘masses’ or ‘honeycombing’ in the images and use these concepts in
their diagnosis. Automating this creative aspect of reasoning encompasses a great many technical problems such as
acquiring relevant concepts, forming compositional abstractions, learning to reason within the abstract space, and
continually learning better abstractions with experience.

As a first step towards this larger goal, I study in my work [7] the problem of axiom synthesis for reasoning
domains in programming languages like Kleene Algebras. Although the problem of finding axiomatizations is
centuries old, I define in this work a new formulation of axiom synthesis as a computational problem. This
novel problem definition opens up the use of computational tools for finding axioms in many complex domains,
including those where the objects of study may not even have a logical specification. I develop Learning-based
Axiom Synthesis, a framework based on data-driven logic learning for synthesizing axioms. Similar to my work
on lemma synthesis for verification [3], the synthesis problem has no logical specification! The ability to elicit
logical formulas desired in creative tasks without a logical specification is a distinguishing feature of my work.

We used the learning-based framework to automatically synthesize axioms for modal logics and Kleene algebras,
finding axioms that were hitherto only known to have been formulated by expert logicians! Our work has received
a lot of enthusiasm from the community, and I am currently pursuing several multi-institute collaborations to
automatically discover axioms for domains that are tedious or hard to axiomatize manually.
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Future Outlook
My long-term vision is to build machines that learn and reason in synergy. This is a vast space where my
thesis explores the specific challenge of automating the creative help needed in software verification using learning. In
the future, I want to work more broadly on applications that require inter-operating between learning and reasoning
techniques, by (a) working on PL applications to fill creativity gaps that are filled today by humans using learning
and, (b) working on AI applications to incorporate reasoning into Deep Learning-based technology. As a forward-
looking programming languages researcher, I will develop techniques at the intersection of programming languages
and program synthesis/machine learning to advance this vision.

I outline below some directions that I plan to pursue in the short term. The unifying theme in these directions
is the use of logic learning and automated reasoning, which I am uniquely positioned to apply successfully owing to
my research experience.

Democratizing Verification Developing verified systems typically requires large teams consisting of many ver-
ification experts as well as systems programmers. I want to enable systems programmers to be able to verify their
software without help from verification experts. While systems programmers are already able to think about and
argue the correctness of their software at a high-level, they often need verification experts to help them convince a
verification engine (a.k.a “proof engineering”) that their arguments are correct.

In my thesis work, I develop the Intrinsic Specifications (IS) paradigm [6] which allows a programmer to verify
their program by simply writing a special kind of code called ghost code. Crucially, the paradigm requires no proof
engineering! However, a potential obstacle is the complexity of the required ghost code. I will use program synthesis
and machine learning techniques to automatically synthesize ghost code, lowering the cognitive burden involved in
verification for systems programmers.

A particular domain where lowering the cognitive burden is of great urgency is the verification of smart contracts,
which can be written by systems programmers with no verification expertise. With active and dedicated malicious
actors, unsecure code always leads to massive financial losses with no real recourse. I believe that my experience with
developing a verified blockchain will enable me to understand the technical challenges deeply and develop effective
solutions. I intend to collaborate with systems and security researchers in these efforts.

Learning for Scalable Automated Verification One of the primary challenges in automated verification today
is scale. Industrial code can be quite large, and automated logic solvers are unable to handle the size of the
verification queries. However, there are several application domains where the size of the code written by the
programmer (i.e., the “client” code) is small, but the code may call several standard library functions which can
have large implementations. The challenge is that the library functions are themselves unverified and have no formal
specifications, which seemingly makes this setting just as intractable as large code.

In ongoing work, my collaborators and I are investigating verification modulo tested libraries, a new approach
that disentangles reasoning about the library from reasoning about the client code. The key idea is to use learning
to infer specifications for libraries that are correct with a high degree of assurance, and then use these inferred
specifications to verify the relatively small client code. The assurance for library functions is provided using a test
generator, which scales to large code extremely well. I will use the algorithms for logic learning developed in my
thesis to infer specifications, adapting them to learning using test generators. This is a promising research direction
with manifold applications such as mobile applications, web applications, IoT, etc.

Concept Learning in the Large My thesis work argues that learning concepts (represented as logical formulas)
from examples can automate a vast space of creative tasks. However, state-of-the-art techniques for logical concept
learning (a) do not scale, even to thousands of examples, and (b) cannot handle noise. I plan to work on fundamental
techniques for improving logical concept learning to overcome these challenges. I am currently pursuing several
different approaches to solve this problem, including neuro-symbolic techniques.

Language and Logic The growing capabilities of Large Language Models (LLMs) have enabled computers to
effectively interpret natural language utterances across many applications. Consequently, it appears highly plausible
that we may be able to use natural language in place of formal logic for reasoning. This is an emerging area with a
rich set of problems.

One application in this area that I plan to tackle is natural language theorem proving using automated logic
engines. Humans write prove theorems by writing down a set of high-level arguments in natural language. These
arguments are such that other humans can read the arguments and easily see that each step follows from the previous
steps. However, theorem provers today require the user to write a proof as a set of tactics specific to the prover.
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Contemporary work on machine learning for theorem proving builds on this interface, developing machine learning
techniques that try to generate the relevant tactics from natural language text. These techniques perform better
with more data and better models, but they can also fail very easily. For example, no known technique achieves
100% accuracy on well-established datasets consisting of high school mathematics problems.

In future research, I plan to investigate augmenting LLMs with automated logic solvers to prove theorems. This
will enable users to simply prove their theorems in natural language, and perhaps even allow LLMs to automatically
generate natural language proofs (which are then formally verified). I plan to collaborate with researchers in machine
learning and education in these efforts. More generally, I plan to collaborate with machine learning researchers to
use LLMs augmented with logic solvers to tackle more ambitious goals like ensuring the coherence and consistency
of conversational AI models.
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